To Be or Not to Be: EHB Stars and AGB Stars

2018 ◽  
Vol 14 (S343) ◽  
pp. 357-359
Author(s):  
David A. Brown

AbstractThe formation of EHB stars is linked to the lives of AGB stars by indications that such EHB/sdB stars might form in globular clusters with multiple populations linked to AGB evolution. Observations of massive globular clusters, such as ω-Centauri (Bedin et al.2004, Piotto et al.2005) suggest that single EHB stars might form from He-enhanced progenitors (D’Antona et al.2005, D’Antona & Caloi 2008, Lee et al.2005) in environments enriched by AGB ejecta. The studies conducted by Han et al. (2002), Han et al. (2003), and Han et al. (2007) have been able to provide a strong case for the binary formation of EHB/sdB stars in the Galactic field, though binary formation channels in globular clusters is uncertain. Simulations presented here are an extension of the simulations of Han et al. (2002) and Han et al. (2003), for low metallicities to examine the binary EHB population in globular clusters.

2008 ◽  
Vol 4 (S252) ◽  
pp. 349-357
Author(s):  
Z. Han ◽  
Ph. Podsiadlowski

AbstractIn this talk, we present the general principles of binary evolution and give two examples. The first example is the formation of subdwarf B stars (sdBs) and their application to the long-standing problem of ultraviolet excess (also known as UV-upturn) in elliptical galaxies. The second is for the progenitors of type Ia supernovae (SNe Ia). We discuss the main binary interactions, i.e., stable Roche lobe overflow (RLOF) and common envelope (CE) evolution, and show evolutionary channels leading to the formation of various binary-related objects. In the first example, we show that the binary model of sdB stars of Han et al. (2002, 2003) can reproduce field sdB stars and their counterparts, extreme horizontal branch (EHB) stars, in globular clusters. By applying the binary model to the study of evolutionary population synthesis, we have obtained an “a priori” model for the UV-upturn of elliptical galaxies and showed that the UV-upturn is most likely resulted from binary interactions. This has major implications for understanding the evolution of the UV excess and elliptical galaxies in general. In the second example, we introduce the single degenerate channel and the double degenerate channel for the progenitors of SNe Ia. We give the birth rates and delay time distributions for each channel and the distributions of companion stars at the moment of SN explosion for the single degenerate channel, which would help to search for the remnant companion stars observationally.


1998 ◽  
Vol 11 (1) ◽  
pp. 395-395
Author(s):  
S. Nishida ◽  
T. Tanabé ◽  
S. Matsumoto ◽  
T. Onaka ◽  
Y. Nakada ◽  
...  

A systematic near-infrared survey was made for globular clusters in the Magellanic Clouds. Two infrared stars were discovered in NGC419 (SMC) and NGC1783 (LMC). NGC419 and NGC1783 are well-studied rich globular clusters whose turn-off masses and ages are estimated MTO ~ 2.0 Mʘ and т ~1.2 Gyr for NGC419, and MT0 ~ 2.0 Mʘ and т ʘ 0.9 Gyr for NGC1783, respectively. The periods of the infrared light variations were determined to be 540 dfor NGC419IR1 and to be 480 d for NGC1783IR1, respectively. Comparison of the measurements with the period—if magnitude relation for carbon Miras in the LMC by Groenewegen and Whitelock(1996) revealed that the Kmagnitudes of the infrared stars were fainter by about 0.3 — 0.8 magnitude than those predicted by the P — K relation. This deviation can be explained if the infrared stars are surrounded by thick dust shells and are obscured even in the K band. The positions of NGC419IR1and NGC1783IR1 on the P — K diagram suggest that AGB stars with the main sequence masses of about 2 Mʘ start their heavy mass-loss when P ʘ 500 d.


2015 ◽  
Vol 11 (S317) ◽  
pp. 97-103
Author(s):  
Eugenio Carretta

AbstractThis is a “biased” review because I will show recent evidence on the contribution of globular clusters (GCs) to the halo of our Galaxy seen through the lens of the new paradigm of multiple populations in GCs. I will show a few examples where the chemistry of multiple populations helps to answer hot questions including whether and how much GCs did contribute to the halo population, if we have evidence of the GCs-halo link, what are the strengths and weak points concerning this contribution.


2019 ◽  
Vol 871 (1) ◽  
pp. L19 ◽  
Author(s):  
Francesca D’Antona ◽  
Paolo Ventura ◽  
Anna Fabiola Marino ◽  
Antonino P. Milone ◽  
Marco Tailo ◽  
...  

2019 ◽  
Vol 489 (1) ◽  
pp. L80-L85 ◽  
Author(s):  
Nate Bastian ◽  
Christopher Usher ◽  
Sebastian Kamann ◽  
Carmela Lardo ◽  
Søren S Larsen ◽  
...  

ABSTRACT The presence of star-to-star light-element abundance variations (also known as multiple populations, MPs) appears to be ubiquitous within old and massive clusters in the Milky Way and all studied nearby galaxies. Most previous studies have focused on resolved images or spectroscopy of individual stars, although there has been significant effort in the past few years to look for multiple population signatures in integrated light spectroscopy. If proven feasible, integrated light studies offer a potential way to vastly open parameter space, as clusters out to 10s of Mpc can be studied. We use the Na D lines in the integrated spectra of two clusters with similar ages (2–3 Gyr) but very different masses: NGC 1978 (∼3 × 105 M⊙) in the Large Magellanic Cloud and G114 (1.7 × 107 M⊙) in NGC 1316. For NGC 1978, our findings agree with resolved studies of individual stars that did not find evidence for Na spreads. However, for G114, we find clear evidence for the presence of multiple populations. The fact that the same anomalous abundance patterns are found in both the intermediate age and ancient globular clusters lends further support to the notion that young massive clusters are effectively the same as the ancient globular clusters, only separated in age.


2007 ◽  
Vol 3 (S246) ◽  
pp. 246-250
Author(s):  
Sambaran Banerjee ◽  
Pranab Ghosh

AbstractWe explore a Boltzmann scheme for studying the evolution of compact binary populations in globular clusters. We include processes of compact binary formation by tidal capture and exchange encounters, binary destruction by exchange and dissociation mechanisms and binary hardening by encounters, gravitational radiation and magnetic braking, as also the orbital evolution during mass transfer, following Roche lobe contact. From the evolution of compact-binary population, we investigate the dependence of the model number of X-ray binaries NXB on two essential cluster properties, namely, the star-star and star-binary encounter-rate parameters Γ and γ (Verbunt parameters). We find that the values of NXB and their expected scaling with the Verbunt parameters are in good agreement with results from recent X-ray observations of Galactic globular clusters.


Sign in / Sign up

Export Citation Format

Share Document