An evaluation of the effect of nutritional strategy in early lactation on performance and energy status of Holstein Friesian dairy cows

2009 ◽  
Vol 2009 ◽  
pp. 79-79
Author(s):  
F J Young ◽  
R A Law ◽  
H S Gilmore ◽  
D C Patterson ◽  
A R G Wylie ◽  
...  

Improving the sustainability and overall longevity and health of modern Holstein Friesian (HF) dairy cattle is essential in order to maintain overall farm profitability. Prolonged negative energy balance in early lactation can result in metabolic stress, as well as long term problems with fertility (Pryce et al., 2004). In addition, maximising the efficiency of nitrogen (N) utilisation by strategies such as reducing the crude protein content of the diet is of crucial importance in minimising the environmental impact of dairying. The aim of this study was to evaluate the effect of a range of nutritional strategies on milk production, energy balance and efficiency of N use in early lactation.

2011 ◽  
Vol 78 (4) ◽  
pp. 479-488 ◽  
Author(s):  
Josef Gross ◽  
Hendrika A van Dorland ◽  
Rupert M Bruckmaier ◽  
Frieder J Schwarz

Milk fatty acid (FA) profile is a dynamic pattern influenced by lactational stage, energy balance and dietary composition. In the first part of this study, effects of the energy balance during the proceeding lactation [weeks 1–21 post partum (pp)] on milk FA profile of 30 dairy cows were evaluated under a constant feeding regimen. In the second part, effects of a negative energy balance (NEB) induced by feed restriction on milk FA profile were studied in 40 multiparous dairy cows (20 feed-restricted and 20 control). Feed restriction (energy balance of −63 MJ NEL/d, restriction of 49 % of energy requirements) lasted 3 weeks starting at around 100 days in milk. Milk FA profile changed markedly from week 1 pp up to week 12 pp and remained unchanged thereafter. The proportion of saturated FA (predominantly 10:0, 12:0, 14:0 and 16:0) increased from week 1 pp up to week 12 pp, whereas monounsaturated FA, predominantly the proportion of 18:1,9c decreased as NEB in early lactation became less severe. During the induced NEB, milk FA profile showed a similarly directed pattern as during the NEB in early lactation, although changes were less marked for most FA. Milk FA composition changed rapidly within one week after initiation of feed restriction and tended to adjust to the initial composition despite maintenance of a high NEB. C18:1,9c was increased significantly during the induced NEB indicating mobilization of a considerable amount of adipose tissue. Besides 18:1,9c, changes in saturated FA, monounsaturated FA, de-novo synthesized and preformed FA (sum of FA >C16) reflected energy status in dairy cows and indicated the NEB in early lactation as well as the induced NEB by feed restriction.


2000 ◽  
Vol 70 (3) ◽  
pp. 503-514 ◽  
Author(s):  
F. Sutter ◽  
D. E. Beever

AbstractEnergy and nitrogen metabolism were examined at weekly intervals during lactation weeks 1 to 8 in Holstein-Friesian cows (no. = 9) offered a diet of hay, maize pellets (whole plant) and concentrates, (barley, maize and soya bean; forage : concentrate ratio 65 : 35), with feeding levels close toad libitum.After calving, the cows lost body weight until week 7, with peak milk yield (35 kg/day) recorded during week 3. Dry-matter intakes increased progressively to week 4 then remained relatively constant. Apparent digestibility of dietary energy was unaffected by stage of lactation but the overall value was low (0·653) indicative of the quantity and quality of long hay in the diet. Metabolizable energy intakes ranged between 163 and 202 MJ/day, with little between-week variation after that between weeks 1 and 2 (P< 0·01). Milk energy output was relatively stable during weeks 1 to 4 but then declined progressively for each remaining week, whilst heat energy output was relatively constant throughout. Estimates of body energy retention indicated the cows were in negative energy balance at all times, being greater in week 1 (64 MJ/day,P< 0·01) than weeks 2 to 4 (mean, 35 MJ/day) or weeks 5 to 8 (22 MJ/day). Digestible nitrogen (N) intake was reduced in week 1, whilst apparent N digestibility declined significantly , with little between-week variation after that between weeks 1 and 2 < 0·05) as lactation progressed. The cows were in negative N balance (–19 g/day) during week 1, with zero (week 2) or positive balances noted thereafter.It is concluded that during early lactation, the extent of body tissue mobilization in average yielding cows can be substantial and prolonged, whilst attainment of positive body N status occurred earlier and was not related to the energy status of the cows.


2016 ◽  
Vol 19 (1) ◽  
pp. 197-204 ◽  
Author(s):  
A. Nowroozi-Asl ◽  
N. Aarabi ◽  
A. Rowshan-Ghasrodashti

AbstractThe transition from late gestation to early lactation is a critical period in a dairy cow’s life so that dairy cows undergo tremendous changes during this period.The aim of this study was to determine blood levels of ghrelin, leptin, glucose, β-ydroxybutyrate (BHB), non-esterified fatty acids (NEFA), triglycerides (TG), triiodothyronine (T3) and thyroxine (T4) in dairy Holstein cows (n = 20) and their correlations during the transition period.Blood samples were collected weekly from 3 wk antepartum to 6 wk postpartum from 20 high-yielding Holstein-Friesian cows. Ghrelin and leptin of plasma and glucose, BHB, NEFA, TG, T3, T4 of serum were then measured.Early lactation cows showed significantly higher (p<0.05) values of ghrelin, BHB and NEFA, and lower levels of leptin, TG, T3 and T4 (p<0.05) compared to late dry cows. Serum concentrations of glucose did not differ significantly at any time (P>0.05).Plasma ghrelin concentrations showed positive correlations with the serum BHB and NEFA (p<0.01), while plasma ghrelin had negative correlations (p<0.01) with leptin, TG, T3 and T4. In addition, no significant correlation (p>0.05) was found between ghrelin and glucose.The results of the study showed that blood ghrelin, leptin, BHB and NEFA levels are sensitive indicators of the energy balance during the peri-partum period in dairy cows and glucose values may not be considered as a precise indicator of negative energy balance in dairy cows.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1674
Author(s):  
Ilona Strączek ◽  
Krzysztof Młynek ◽  
Agata Danielewicz

A significant factor in improving the performance of dairy cows is their physiological ability to correct a negative energy balance (NEB). This study, using Simmental (SIM) and Holstein-Friesian (HF) cows, aimed to assess changes in NEB (non-esterified fatty acid; body condition score; and C16:0, C18:0, and C18:1) and its effect on the metabolic efficiency of the liver (β-hydroxybutyrate and urea). The effects of NEB on daily yield, production at peak lactation and its duration, and changes in selected milk components were assessed during complete lactation. Up to peak lactation, the loss of the body condition score was similar in both breeds. Subsequently, SIM cows more efficiently restored their BCS. HF cows reached peak lactation faster and with a higher milk yield, but they were less able to correct NEB. During lactation, their non-esterified fatty acid, β-hydroxybutyrate, C16:0, C18:0, C18:1, and urea levels were persistently higher, which may indicate less efficient liver function during NEB. The dynamics of NEB were linked to levels of leptin, which has anorectic effects. Its content was usually higher in HF cows and during intensive lactogenesis. An effective response to NEB may be exploited to improve the production and nutritional properties of milk. In the long term, it may extend dairy cows’ productive life and increase lifetime yield.


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1995 ◽  
Author(s):  
Pantelis Nikolaidis ◽  
Eleftherios Veniamakis ◽  
Thomas Rosemann ◽  
Beat Knechtle

Athletes competing in ultra-endurance sports should manage nutritional issues, especially with regards to energy and fluid balance. An ultra-endurance race, considered a duration of at least 6 h, might induce the energy balance (i.e., energy deficit) in levels that could reach up to ~7000 kcal per day. Such a negative energy balance is a major health and performance concern as it leads to a decrease of both fat and skeletal muscle mass in events such as 24-h swimming, 6-day cycling or 17-day running. Sport anemia caused by heavy exercise and gastrointestinal discomfort, under hot or cold environmental conditions also needs to be considered as a major factor for health and performance in ultra-endurance sports. In addition, fluid losses from sweat can reach up to 2 L/h due to increased metabolic work during prolonged exercise and exercise under hot environments that might result in hypohydration. Athletes are at an increased risk for exercise-associated hyponatremia (EAH) and limb swelling when intake of fluids is greater than the volume lost. Optimal pre-race nutritional strategies should aim to increase fat utilization during exercise, and the consumption of fat-rich foods may be considered during the race, as well as carbohydrates, electrolytes, and fluid. Moreover, to reduce the risk of EAH, fluid intake should include sodium in the amounts of 10–25 mmol to reduce the risk of EAH and should be limited to 300–600 mL per hour of the race.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3256
Author(s):  
Edward H. Cabezas-Garcia ◽  
Alan W. Gordon ◽  
Finbar J. Mulligan ◽  
Conrad P. Ferris

A statistical re-assessment of aggregated individual cow data was conducted to examine trends in fat-to-protein ratio in milk (FPR), and relationships between FPR and energy balance (EB, MJ of ME/day) in Holstein-Friesian dairy cows of different parities, and at different stages of lactation. The data were collected from 27 long-term production trials conducted between 1996 and 2016 at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough, Northern Ireland. In total, 1321 lactations (1 to 20 weeks in milk; WIM), derived from 840 individual cows fed mainly grass silage-based diets, were included in the analysis. The energy balance was calculated daily and then averaged weekly for statistical analyses. Data were further split in 4 wk. intervals, namely, 1–4, 5–8, 9–12, 13–16, and 17–20 WIM, and both partial correlations and linear regressions (mixed models) established between the mean FPR and EB during these periods. Three FPR score categories (‘Low’ FPR, <1.0; ‘Normal’ FPR, 1.0–1.5; ‘High’ FPR, >1.5) were adopted and the performance and EB indicators within each category were compared. As expected, multiparous cows experienced a greater negative EB compared to primiparous cows, due to their higher milk production relative to DMI. Relatively minor differences in milk fat and protein content resulted in large differences in FPR curves. Second lactation cows displayed the lowest weekly FPR, and this trend was aligned with smaller BW losses and lower concentrations of non-esterified fatty acids (NEFA) until at least 8 WIM. Partial correlations between FPR and EB were negative, and ‘greatest’ in early lactation (1–4 WIM; r = −0.38 on average), and gradually decreased as lactation progressed across all parities (17–20 WIM; r = −0.14 on average). With increasing parity, daily EB values tended to become more negative per unit of FPR. In primiparous cows, regression slopes between FPR and EB differed between 1–4 and 5–8 WIM (−54.6 vs. −47.5 MJ of ME/day), while differences in second lactation cows tended towards significance (−57.2 vs. −64.4 MJ of ME/day). Irrespective of the lactation number, after 9–12 WIM, there was a consistent trend for the slope of the linear relationships between FPR and EB to decrease as lactation progressed, with this likely reflecting the decreasing milk nutrient demands of the growing calf. The incidence of ‘High’ FPR scores was greatest during 1–4 WIM, and decreased as lactation progressed. ‘High’ FPR scores were associated with increased energy-corrected milk (ECM) yields across all parities and stages of lactation, and with smaller BW gains and increasing concentrations (log transformed) of blood metabolites (non-esterified fatty acid, NEFA; beta-hydroxybutyrate, BHB) until 8 WIM. Results from the present study highlight the strong relationships between FPR in milk, physiological changes, and EB profiles during early lactation. However, while FPR can provide an indication of EB at a herd level, the large cow-to-cow variation indicates that FPR cannot be used as a robust indicator of EB at an individual cow level.


Sports ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 82 ◽  
Author(s):  
Majid Syed-Abdul ◽  
Dhwani Soni ◽  
Jason Wagganer

Low caloric intake or excessive energy expenditure can lead to a negative energy balance, which, in female athletes, may result in a condition called the female athlete triad. While several guidelines identified proper nutrition as a first line of treatment, little research has been reported to show the effect of a professional nutrition program (PNP) on the female athlete triad. The purpose of this case report was to measure the short- and long-term effects of a PNP on a female athlete presenting triad characteristics. A 20-year-old female track-and-field athlete at a Division I university who was in negative energy balance and amenorrheic underwent a one-month PNP. Short- and long-term effects measured by a dual X-ray absorptiometry scan prior to and after attending a PNP showed increased total energy intake from 2188 kcals to 3187 kcals, which resulted in an increase in body fat percent (BF%) from 4.7% to 6.7%. However, by the end of four months, energy intake and BF% (5.7% and 6.0%) values were reduced, respectively. After the twelve-month follow-up, BF% was increased (10.5%), suggesting that increasing energy intake to meet energy demands, without compromising athletic training, can be an effective treatment for the female athlete triad.


2009 ◽  
Vol 2009 ◽  
pp. 12-12
Author(s):  
H S Gilmore ◽  
F J Young ◽  
R A Law ◽  
A R G Wylie ◽  
D C Patterson ◽  
...  

Poor fertility is a major problem on dairy farms. On-farm studies indicate than pregnancy rates to first service have declined from approximately 55% between 1975 and 1982 to 39% between 1995 and 1998 (Royal et al., 2000), illustrating a decline of approximately 1% per year during this period. The cause is multifactorial and influenced by many factors including genetics, management and nutrition. Previous studies have reported improved fertility through nutritional modification in early lactation (Gong et al., 2002). The aim of this study was to evaluate the effect of nutritional strategy in early lactation on reproductive performance.


1998 ◽  
Vol 10 (2) ◽  
pp. 127 ◽  
Author(s):  
F. H. Bronson

In the laboratory, ovulation is suppressed when a mammal is in negative energy balance whether that state is caused by inadequate food intake, excessive locomotor activity or heavy thermoregulatory costs. In this paper, knowledge generated in the laboratory about the link between ovulation and energy balance is examined in relation to the kinds of energetic challenges mammals actually face in natural habitats. When viewed in that context, several conclusions can be drawn. First, females ovulate whenever extant energetic conditions permit unless the process is blocked by non-metabolic stress, social cues or a predictive seasonal cue such as photoperiod. In the latter case, most mammals show at least a seasonal tendency in their reproduction and the majority do not use a predictive cue; they reproduce opportunistically in relation to seasonal variation in the energetic characteristics of their environment. Second, the widely held assumption that a female’s fat reserves must exceed a critical level in order that she may ovulate finds no support in the literature dealing with natural populations. Third, the surprisingly rapid responsiveness of the gonadotrophin releasing hormone (GnRH) pulse generator to energetic manipulation probably reflects the study of animals that are in a pure survival mode. Fourth, the complexity of the energetic challenges mammals face in the wild suggests that there are probably multiple metabolic and neural pathways coupling ovulation to energy balance and that these pathways are probably characterized by considerable overlap and redundancy. Thus, fifth, to develop a more realistic overview of these pathways there is a need for experimental designs that present mammals with the kinds of complex challenges they actually face in the wild habitats in which they evolved.


Metabolism ◽  
1999 ◽  
Vol 48 (9) ◽  
pp. 1120-1127 ◽  
Author(s):  
Janet Pritchard ◽  
Jean-Pierre Després ◽  
Jacques Gagnon ◽  
Adnré Tchernof ◽  
Adnré Nadeau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document