Theoretical study of liquid crystal dielectric-loaded plasmonic waveguide

2015 ◽  
Vol 9 (2) ◽  
pp. 275-280 ◽  
Author(s):  
Hamed Armand ◽  
M. Dashti Ardakani

A fully two-dimensional theoretical study of the electromagnetic wave propagation through Metal–Liquid Crystal–Metal (M–LC–M) waveguide structure is presented. Dispersion relations corresponding to both symmetric and antisymmetric-coupled surface plasmons polaritons modes in M–LC–M structure are derived and numerically solved. The effects of LC tilt angles on the effective refractive index and propagation length are proposed. The analytical method is in good agreement with those obtained from finite-difference time-domain simulation. The obtained analytic formula can be used as an efficient element in designing tunable ultrahigh nanoscale integrated plasmonic devices.

2005 ◽  
Vol 22 (2) ◽  
pp. 346 ◽  
Author(s):  
Xinghua Wang ◽  
Bin Wang ◽  
Philip J. Bos ◽  
James E. Anderson ◽  
John J. Pouch ◽  
...  

Author(s):  
Abdelkrim Khelif ◽  
Abdelkrim Choujaa ◽  
Sarah Benchabane ◽  
Bahram Djafari-Rouhani ◽  
Vincent Laude

AbstractWe present a combined experimental and theoretical study of the guiding, bending and filtering of acoustic waves in an ultrasonic crystal. The crystal consists of a two-dimensional periodical array of steel rods immersed in water, for wich a complete acoustic band gap extending from 240 to 325 kHz is found experimentally. Waveguides for acoustic waves are further created by removing a line defect, on which stubs can be added by removing rods from the side-walls of the waveguide. Full transmission is observed for a one-period-wide straight waveguide within the full-band-gap of the perfect phononic crystal, i.e. for a waveguide aperture smaller than one acoustic wavelength. Waveguiding over a wide frequency range is also obtained for a one-period-wide waveguide with two sharp 90° bends. Finite-difference time-domain computations are found to be in good agreement with the measurements in all experimental configurations.


2009 ◽  
Vol 1162 ◽  
Author(s):  
Hitoshi Sai ◽  
Yoshiaki Kanamori ◽  
Kengo Watanabe ◽  
Hiroo Yugami

AbstractThe microcavity effect of two-dimensional W surface-relief gratings has been investigated by means of the finite-difference time-domain simulation. The peak structure of the spectral emissivity of W gratings with a number of microcavities is in good agreement with the spectral features of a single microcavity. This result shows that the emissivity enhancement by W gratings with microcavities is mainly attributable to the microcavity effect that arises from each microcavity. It is that the spectral emissivity can be controlled by a combination of several microcavities with different parameters, and that not only a rectangular but a cylindrical microcavity also shows the microcavity effect according to its cavity modes.


2021 ◽  
Vol 11 (9) ◽  
pp. 3844
Author(s):  
Konstantinos P. Prokopidis ◽  
Dimitrios C. Zografopoulos

A novel finite-difference time-domain formulation for the modeling of general anisotropic dispersive media is introduced in this work. The method accounts for fully anisotropic electric or magnetic materials with all elements of the permittivity and permeability tensors being non-zero. In addition, each element shows an arbitrary frequency dispersion described by the complex-conjugate pole–residue pairs model. The efficiency of the technique is demonstrated in benchmark numerical examples involving electromagnetic wave propagation through magnetized plasma, nematic liquid crystals and ferrites.


Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 187
Author(s):  
Tianshun Li ◽  
Renxian Gao ◽  
Xiaolong Zhang ◽  
Yongjun Zhang

Changing the morphology of noble metal nanoparticles and polarization dependence of nanoparticles with different morphologies is an important part of further research on surface plasma enhancement. Therefore, we used the method based on Matlab simulation to provide a simple and effective method for preparing the morphologies of Au nanoparticles with different morphologies, and prepared the structure of Au nanoparticles with good uniformity and different morphologies by oblique angle deposition (OAD) technology. The change of the surface morphology of nanoparticles from spherical to square to diamond can be effectively controlled by changing the deposition angle. The finite difference time domain (FDTD) method was used to simulate the electromagnetic fields of Au nanoparticles with different morphologies to explore the polarization dependence of nanoparticles with different shapes, which was in good agreement with Raman spectrum.


2021 ◽  
pp. 116969
Author(s):  
Kristina Gak Simić ◽  
Ivana Đorđević ◽  
Goran Janjić ◽  
Dániel Datz ◽  
Tibor Tóth-Katona ◽  
...  

2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Eduard Amromin

According to several known experiments, an increase of the incoming flow air content can increase the hydrofoil lift coefficient. The presented theoretical study shows that such increase is associated with the decrease of the fluid density at the cavity surface. This decrease is caused by entrainment of air bubbles to the cavity from the surrounding flow. The theoretical results based on such explanation are in a good agreement with the earlier published experimental data for NACA0015.


2021 ◽  
Vol 36 (4) ◽  
pp. 373-378
Author(s):  
Haewon Jung ◽  
Dal-Jae Yun ◽  
Hoon Kang

An image focusing method for holographic subsurface radar (HSR) is proposed herein. HSR is increasingly being utilized to survey objects buried at shallow depths and the acquired signals are converted into an image by a reconstruction algorithm. However, that algorithm requires actual depth and material information or depends on human decisions. In this paper, an entropy-based image focusing technique is proposed and validated by numerical simulation software package based on finite-difference time-domain method and experiment. The resulting images show good agreement with the actual positions and shapes of the targets.


Sign in / Sign up

Export Citation Format

Share Document