air content
Recently Published Documents


TOTAL DOCUMENTS

606
(FIVE YEARS 152)

H-INDEX

29
(FIVE YEARS 4)

Author(s):  
Giuliana Scuderi

The construction industry is the largest global consumer of materials, among which sand plays a fundamental role; now the second most used natural resource behind water, sand is the primary component in concrete. However, natural sand production is a slow process and sand is now consumed at a faster pace than it’s replenished. One way to reduce consumption of sand is to use alternative materials in the concrete industry. This paper reports the exploratory study on the suitability of aquaculture byproducts as fine aggregates in concrete mixtures. Seashell grit, seashell flour and oyster flour were used as sand replacements in concrete mixtures (10%, 30% and 50% substitution rates). All the mixtures were characterized in fresh and hardened states (workability, air content, compressive strength and water absorption). Based on compressive strength, measured at 7 and 28 days, seashell grit provided the most promising results: the compressive strength was found to be larger than for conventional concrete. Moreover, the compressive strength of the cubes was larger, when larger percentages of seashell grit were used, with the highest value obtained for 50% substitution. However, for oyster flour and seashell flour, only 10% sand substitution provided results comparable with the control mixture. For the three aggregates, workability of concrete decreases with fineness modulus decrease. For mixtures in which shell and oyster flour were used with 30% and 50% substitution percentages, it was necessary to increase the quantity of mixing water to allow a minimal workability. In conclusion, considering the promising results of the seashell grit, it is suggested to study further the characteristic of the material, also considering its environmental and physical properties, including acoustic and thermal performances. Higher substitution percentages should also be investigated. This research adds to the relevant literature in matter of biobased concrete, aiming at finding new biobased sustainable alternatives in the concrete industry.


2022 ◽  
Vol 12 (1) ◽  
pp. 76-97
Author(s):  
Carlos Fernando Gomes do Nascimento ◽  
Alexandre De Azevedo Demétrio Filho ◽  
Thaís Marques da Silva ◽  
Eliana Cristina Barreto Monteiro

The objective of this study was to understand whether voids intensify the triggering of reinforcement corrosion in cellular concrete, for slabs with light specific masses. The methodology was based on four tests: visual inspection, corrosion potential, electrical resistivity, and mass loss. In relation to the L1 family, the L2 and L3 families (higher air content) were shown to be more susceptible to reinforcement corrosion and mass loss from the steel bars in 90% of cases. However, the behavior of some slabs indicates the possibility of the process being asymptomatic with regard to staining, considering that the influence of the cover on the corrosion of the steel bars was verified


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 290
Author(s):  
Farhan Ahmad ◽  
Arshad Jamal ◽  
Mudassir Iqbal ◽  
Muwaffaq Alqurashi ◽  
Meshal Almoshaogeh ◽  
...  

Nano graphite platelets (NGPs) belong to the carbon family and have a huge impact on the construction industry. NGPs are used as multi-functional fillers and have the potential to develop reinforcing within cementitious composites. In this paper, NGPs were incorporated in cementitious composites to investigate the effects of NGPs on the fresh, mechanical, durability, and microstructural properties of concrete. Five mixes were prepared with intrusion of NGPs (0%, 0.5%, 1.5%, 3%, and 5% by weight of cement). The properties studied involved workability, air content, hardened density, compressive strength, tensile strength, flexural strength, sorptivity, ultrasonic pulse velocity (UPV), water absorption, and external sulfate attack. The workability and percent air content decrease by 22.5% and 33.8%, respectively, for concrete with 5% NGPs compared to the control mix. The specimens containing 5% of NGPs revealed the hardened density, compressive, tensile, and flexural strength to increase by 11.4%, 38.5%, 31.6%, and 44.34%, respectively, compared to the control mix. The results revealed that the incorporation of 5%NGPs in cementitious composites reduces the sorptivity and water absorption by 32.2% and 73.9%, respectively, whereas, it increases the UPV value by 7.5% compared to the control mix. Furthermore, the incorporation of NGPs provided better resistance against external sulfate attacks. SEM–EDX spectroscopy was carried out to investigate its microstructural analysis.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 271
Author(s):  
Woo Sung Yum ◽  
Juan Yu ◽  
Dongho Jeon ◽  
Haemin Song ◽  
Sungwon Sim ◽  
...  

This study examined the mechanical and durability properties of CaO-activated ground-granulated blast-furnace slag (GGBFS) concretes made with three different additives (CaCl2, Ca(HCOO)2, and Ca(NO3)2) and compared their properties to the concrete made with 100% Ordinary Portland Cement (OPC). All concrete mixtures satisfied targeted air content and slump ranges but exhibited significantly different mechanical and durability properties. The CaO-activated GGBFS concretes showed different strength levels, depending on the type of additive. The added CaCl2 was the most effective, but Ca(NO3)2 was the least effective at increasing mechanical strength in the CaO-activated GGBFS system. The OPC concrete showed the most excellent freezing–thawing resistance in the durability test, but only the CaO-activated GGBFS concrete with CaCl2 exhibited relatively similar resistance. In addition, the chemical resistance was significantly dependent on the type of acid solution and the type of binder. The OPC concrete had the best resistance in the HCl solution, while all CaO-activated GGBFS concretes had relatively low resistances. However, in the H2SO4 solution, all CaO-activated GGBFS concretes had better resistance than the OPC concrete. All concrete with sulfate ions had ettringite before immersion. However, when they were immersed in HCl solution, ettringite tended to decrease, and gypsum was generated. Meanwhile, the CaO-activated GGBFS concrete with CaCl2 did not change the type of reaction product, possibly due to the absence of ettringite and Ca(OH)2. When immersed in an H2SO4 solution, ettringite decreased, and gypsum increased in all concrete. In addition, the CaO-activated concrete with CaCl2 had a considerable amount of gypsum; it seemed that the dissolved C-S-H and calcite, due to the low pH, likely produced Ca2+ ions, and gypsum formed from the reaction between Ca2+ and H2SO4.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7852
Author(s):  
Agata Stolarska ◽  
Teresa Rucińska

The subjects of this study were mortars with varying amounts of recycled ceramic aggregate (RCA). As part of the fine aggregate, the RCA volume share is 10%, 20%, 30%, 50% and 100%. First, fresh mixture parameters were evaluated, such as consistency and air content measurement by pressure method. Next, specimens were molded for compressive strength and flexural strength tests after 7, 28 and 56 days of curing. The thermo-humidity parameters of the composites, i.e., coefficient of capillary action and thermal conductivity coefficient were also investigated using nonstationary method. Sorption kinetics of the mortars at different moisture conditions at 20 °C were also evaluated. Sorption tests were carried out using two methods: TM and DVS. The sorption isotherms were plotted on the basis of equilibrium moisture content for the materials tested. The isotherms obtained by the two methods were evaluated. The results allowed us to draw conclusions on the physical and mechanical parameters of the composites with different amounts of RCA and to evaluate the ability to absorb moisture from the environment by these types of materials. A clear decrease in the compressive strength after 28 days of curing compared to the reference mortar was recorded after using 30% to 100% of RCA (approx. 26% to approx. 39%). Changes in flexural strength were significantly smaller, reaching no more than approx. 7.5%. It was shown that the amount of RCA translates into the ability to sorb moisture, which may affect the application of this type of composites. The amount of RCA translates also into the thermal conductivity coefficient, which decreased with increasing amount of RCA.


2021 ◽  
pp. 1-14
Author(s):  
Rebecca L. Dell ◽  
Alison F. Banwell ◽  
Ian C. Willis ◽  
Neil S. Arnold ◽  
Anna Ruth W. Halberstadt ◽  
...  

Abstract Surface meltwater is becoming increasingly widespread on Antarctic ice shelves. It is stored within surface ponds and streams, or within firn pore spaces, which may saturate to form slush. Slush can reduce firn air content, increasing an ice-shelf's vulnerability to break-up. To date, no study has mapped the changing extent of slush across ice shelves. Here, we use Google Earth Engine and Landsat 8 images from six ice shelves to generate training classes using a k-means clustering algorithm, which are used to train a random forest classifier to identify both slush and ponded water. Validation using expert elicitation gives accuracies of 84% and 82% for the ponded water and slush classes, respectively. Errors result from subjectivity in identifying the ponded water/slush boundary, and from inclusion of cloud and shadows. We apply our classifier to the Roi Baudouin Ice Shelf for the entire 2013–20 Landsat 8 record. On average, 64% of all surface meltwater is classified as slush and 36% as ponded water. Total meltwater areal extent is greatest between late January and mid-February. This highlights the importance of mapping slush when studying surface meltwater on ice shelves. Future research will apply the classifier across all Antarctic ice shelves.


2021 ◽  
Vol 15 (11) ◽  
pp. 5205-5226
Author(s):  
Mariel C. Dirscherl ◽  
Andreas J. Dietz ◽  
Claudia Kuenzer

Abstract. Supraglacial meltwater accumulation on ice shelves may have important implications for future sea level rise. Despite recent progress in the understanding of Antarctic surface hydrology, potential influences on ice shelf stability as well as links to environmental drivers remain poorly constrained. In this study, we employ state-of-the-art machine learning on Sentinel-1 synthetic aperture radar (SAR) and optical Sentinel-2 satellite imagery to provide new insight into the inter-annual and intra-annual evolution of surface hydrological features across six major Antarctic Peninsula and East Antarctic ice shelves. For the first time, we produce a high-resolution record of supraglacial lake extent dynamics for the period 2015–2021 at unprecedented 10 m spatial resolution and bi-weekly temporal scale. Through synergetic use of optical and SAR data, we obtain a more complete mapping record also enabling the delineation of buried lakes. Our results for Antarctic Peninsula ice shelves reveal below-average meltwater ponding during most of melting seasons 2015–2018 and above-average meltwater ponding throughout summer 2019–2020 and early 2020–2021 considering years 2015–2021 as a reference period. Meltwater ponding on investigated East Antarctic ice shelves was far more variable, with above-average lake extents during most 2016–2019 melting seasons and below-average lake extents during 2020–2021, considering the reference interval 2016–2021. This study is the first to investigate relationships with climate drivers both spatially and temporally including time lag analysis. The results indicate that supraglacial lake formation in 2015–2021 is coupled to the complex interplay of local, regional and large-scale environmental drivers with similar driving factors over both ice sheet regions. In particular, varying air temperature, solar radiation and wind conditions influenced supraglacial lake formation over all six ice shelves despite strong local to regional discrepancies, as revealed through pixel-based correlation analysis. Furthermore, regional climatic conditions were shown to be influenced by Southern Hemisphere atmospheric modes showing large-scale impacts on the spatio-temporal evolution of supraglacial lakes as well as on above- or below-average meltwater ponding with respect to the period 2015–2021. Finally, the local glaciological setting, including melt–albedo feedbacks and the firn air content, was revealed to strongly influence supraglacial lake distribution. Recent increases in Antarctic Peninsula surface ponding point towards a further reduction in the firn air content, implying an increased risk for ponding and hydrofracture. In addition, lateral meltwater transport was observed over both Antarctic regions with similar implications for future ice shelf stability.


2021 ◽  
Vol 84 (1) ◽  
pp. 193-210
Author(s):  
Muhammad Roslan Rahim ◽  
Annisa Palupi Trisasongko ◽  
Mohammad Nazri Mohd Jaafar ◽  
Norazila Othman ◽  
Yahaya Ramli ◽  
...  

Gasification technologies have the potential to produce clean and efficient energy sources. This technology is capable of producing synthesis gas from low or negative carbon -based raw materials such as coal, petroleum coke, high sulfur fuel oil, waste or waste materials and biomass. The gas produced from the process is used to replace natural gas to generate electrical power, or acts as basic raw material for producing chemicals and liquid fuels. Gasification is a process which utilizes heat, pressure, and steam to convert materials directly into gases, such as carbon monoxide and hydrogen gases. Despite differing in various aspects, gasification technologies have four common engineering factors such as atmospheric gasification reactors (oxygen or air content level), internal and external heating, reactor design and operating temperature. Raw materials, either in dry form or small granules, are fed into the reactor chamber called gasifier. Raw materials subjected to heat, pressure as well as an environment with rich or low oxygen content. Hydrocarbon gas (also known as Syngas), liquid hydrocarbon (oil) and coal (carbon black and ash) are the three main products of gasification. Syngas can be used as a fuel to produce electricity or steam, or acts as a basic block for various types of chemicals. When mixed with air, Syngas can be used in petrol or diesel engines with slight modifications to the engine.


2021 ◽  
Author(s):  
Wojciech Rejmer

Abstract: The aim of these research is to investigate the air content on aging of poly(ethylene terephthalate) (PET) preforms. Three air pressures were selected and in each pressure 5 samples were aged during 21 days in 80oC. Three samples were selected to cut and measure their density with the use of hydrostatic method. Sample mass, Young modulus and surface roughness were measured for each sample before and after aging and differences between those parameters were presented as results. The changes of parameters may lead to a conclusion that mechanism of polymeric chain oxidation is dominant during thermal aging of PET. However the aging is not the fastest in atmospheric pressure but in lower air contents. This effect may be caused by greater evaporation of small molecule degradation products and shifting of reaction equilibrium in the direction of further decomposition.


2021 ◽  
Author(s):  
Max Brils ◽  
Peter Kuipers Munneke ◽  
Willem Jan van de Berg ◽  
Michiel van den Broeke

Abstract. The firn layer that covers 90 % of the Greenland ice sheet (GrIS) plays an important role in determining the response of the ice sheet to climate change. Meltwater can percolate into the firn layer and refreeze at greater depths, thereby temporarily preventing mass loss. However, as global warming leads to increasing surface melt, more surface melt may refreeze in the firn layer, thereby reducing the capacity to buffer subsequent episodes of melt. This can lead to a tipping point in meltwater runoff. It is therefore important to study the evolution of the Greenland firn layer in the past, present and future. In this study, we present the latest version of our firn model, IMAU-FDM (Firn Densification Model), with an application to the GrIS. We improved the density of freshly fallen snow, the dry-snow densification rate and the firn's thermal conductivity using recently published parameterizations and by calibrating to an extended set of observations of firn density, temperature and liquid water content at the GrIS. Overall, the updated model settings lead to higher firn air content and higher 10 m firn temperatures, owing to a lower density near the surface. The effect of the new model settings on the surface elevation change is investigated through three case studies located at Summit, KAN-U and FA-13. Most notably, the updated model shows greater inter- and intra-annual variability in elevation and an increased sensitivity to climate forcing.


Sign in / Sign up

Export Citation Format

Share Document