Facile Electrochemical Microbiosensor Based on In Situ Self-Assembly of Ag Nanoparticles Coated on Ti3C2Tx for In Vivo Measurements of Chloride Ions in the PD Mouse Brain

Author(s):  
Chenchen Li ◽  
Yi Zhuo ◽  
Xia Xiao ◽  
Shuangfu Li ◽  
Kai Han ◽  
...  
Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 904
Author(s):  
Irin Tanaudommongkon ◽  
Asama Tanaudommongkon ◽  
Xiaowei Dong

Most antiretroviral medications for human immunodeficiency virus treatment and prevention require high levels of patient adherence, such that medications need to be administered daily without missing doses. Here, a long-acting subcutaneous injection of lopinavir (LPV) in combination with ritonavir (RTV) using in situ self-assembly nanoparticles (ISNPs) was developed to potentially overcome adherence barriers. The ISNP approach can improve the pharmacokinetic profiles of the drugs. The ISNPs were characterized in terms of particle size, drug entrapment efficiency, drug loading, in vitro release study, and in vivo pharmacokinetic study. LPV/RTV ISNPs were 167.8 nm in size, with a polydispersity index of less than 0.35. The entrapment efficiency was over 98% for both LPV and RTV, with drug loadings of 25% LPV and 6.3% RTV. A slow release rate of LPV was observed at about 20% on day 5, followed by a sustained release beyond 14 days. RTV released faster than LPV in the first 5 days and slower than LPV thereafter. LPV trough concentration remained above 160 ng/mL and RTV trough concentration was above 50 ng/mL after 6 days with one subcutaneous injection. Overall, the ISNP-based LPV/RTV injection showed sustained release profiles in both in vitro and in vivo studies.


2014 ◽  
Vol 6 (6) ◽  
pp. 519-526 ◽  
Author(s):  
Deju Ye ◽  
Adam J. Shuhendler ◽  
Lina Cui ◽  
Ling Tong ◽  
Sui Seng Tee ◽  
...  

Author(s):  
Yuqi Wang ◽  
Jianhui Weng ◽  
Xidan Wen ◽  
Yuxuan Hu ◽  
Deju Ye

Stimuli-responsive in situ self-assembly of small molecule probes into nanostructures has been promising for the construction of molecular probes for in vivo imaging.


2004 ◽  
pp. 371-380 ◽  
Author(s):  
Y Mizuno ◽  
Y Kanou ◽  
M Rogatcheva ◽  
T Imai ◽  
S Refetoff ◽  
...  

OBJECTIVE: ZAKI-4 was identified as a thyroid hormone-responsive gene in cultured human fibroblasts. A single ZAKI-4 gene encodes two isoforms, ZAKI-4 alpha and beta, both inhibiting calcineurin activity. ZAKI-4 alpha and beta differ at their N termini, and show distinct distribution profiles in human tissues. The aim of this study was to elucidate the organization of the mouse ZAKI-4 gene and to determine the effect of thyroid hormone on the expression of ZAKI-4 isoforms in vivo. DESIGN: We cloned mouse homologues of human ZAKI-4 alpha and beta cDNA. Fluorescence in situ hybridization and bioinformatics analysis were employed to determine the gene organization. The effect of thyroid hormone on the expression of ZAKI-4 isoforms in mouse brain and heart was also studied. METHODS: Total RNA extracted from mouse cerebellum was used to clone ZAKI-4 alpha and beta cDNAs by RT-PCR followed by rapid amplification of cDNA ends. Mice were rendered hypothyroid by feeding a low iodine diet supplemented with propylthiouracil for 2 weeks. In one group (hyperthyroid) L-T(3) was injected i.p. for the last 4 days whereas another group (hypothyroid) received vehicle only. Non-treated mice were controls. RESULTS AND CONCLUSION: Mouse ZAKI-4 alpha and beta cDNAs were highly homologous to the human isoforms. The gene was mapped on chromosome 17qC, syntenic to human chromosome 6 where the human ZAKI-4 gene is located. As observed in human, ZAKI-4 alpha mRNA was expressed only in brain whereas beta mRNA was distributed in other tissues as well, such as heart and skeletal muscle. ZAKI-4 alpha mRNA was lower in the cerebral cortex of hypothyroid mice. Injection of L-T(3) caused an increase in ZAKI-4 beta mRNA in heart; however, expression of neither ZAKI-4 alpha nor beta mRNA was influenced by thyroid status in other tissues. These results indicate that expression of ZAKI-4 alpha and beta isoforms is regulated by thyroid hormone in vivo, and the regulation is isoform- and tissue-specific.


2020 ◽  
Author(s):  
Lorena de Mena ◽  
Michael A Smith ◽  
Jason Martin ◽  
Katie L Dunton ◽  
Carolina Ceballos-Diaz ◽  
...  

Abstract Background Self-assembly of the amyloid-β (Aβ) peptide into aggregates, from small oligomers to amyloid fibrils, is fundamentally linked with Alzheimer’s disease (AD). However it is clear that not all forms of Aβ are equally harmful, and that linking a specific aggregate to toxicity also depends on the assays and model systems used [1, 2]. Though a central postulate of the amyloid cascade hypothesis, there remain many gaps in our understanding regarding the links between Aβ deposition and neurodegeneration. Methods In this study, we examined familial mutations of Aβ that increase aggregation and oligomerization, E22G and DE22, and induce cerebral amyloid angiopathy, E22Q and D23N. We also investigated synthetic mutations that stabilize dimerization, S26C, and a phospho-mimetic, S8E, and non-phospho-mimetic, S8A. To that end, we utilized BRI2-Aβ fusion technology and rAAV2/1 based somatic brain transgenesis in mice to selectively express individual mutant Aβ species in vivo. In parallel we generated PhiC31-based transgenic Drosophila melanogaster expressing wild type (WT) and Aβ40 and Aβ42 mutants, fused to the Argos signal peptide to assess the extent of Aβ42-induced toxicity as well as to interrogate the combined effect of different Aβ40 and Aβ42 species.Results When expressed in the mouse brain for 6 months, Aβ42 E22G, Aβ42 E22Q/D23N, and Aβ42WT formed amyloid aggregates consisting of some diffuse material as well as cored plaques, whereas other mutants formed predominantly diffuse amyloid deposits. Moreover, while Aβ40WT showed no distinctive phenotype, Aβ40 E22G and E22Q/D23N formed unique aggregates that accumulated in mouse brains. This is the first evidence that mutant Aβ40 overexpression leads to deposition under certain conditions. Interestingly, we found that mutant Aβ42 E22G, E22Q, and S26C, but not Aβ40, were toxic to the eye of Drosophila. In contrast, flies expressing a copy of Aβ40 (WT or mutants) in addition to Aβ42WT, showed improved phenotypes, suggesting possible protective qualities for Aβ40. Conclusions These studies suggest that while some Aβ40 mutants form unique amyloid aggregates in mouse brains, they do not exacerbate Aβ42 toxicity in Drosophila, which highlights the significance of using different systems for a better understanding of AD pathogenicity and more accurate screening for new potential therapies.


2018 ◽  
Vol 8 (9) ◽  
pp. 4685-4694 ◽  
Author(s):  
Ulrike K. Harant ◽  
Matteo Santon ◽  
Pierre-Paul Bitton ◽  
Florian Wehrberger ◽  
Thomas Griessler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document