rapid amplification
Recently Published Documents


TOTAL DOCUMENTS

489
(FIVE YEARS 98)

H-INDEX

50
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Sumirtha Balaratnam ◽  
Zachary R Torrey ◽  
David R. Calabrese ◽  
Michael T Banco ◽  
Kamyar Yazdani ◽  
...  

Neuroblastoma RAS (NRAS) is an oncogene that is deregulated and highly mutated in cancers including melanomas and acute myeloid leukemias. Constitutively activated NRAS induces the MAPK and AKT signaling pathways and leads to uncontrolled proliferation and cell growth, making it an attractive target for small molecule inhibition. Like all RAS-family proteins, it has proven difficult to identify small molecules that directly inhibit the protein. An alternative approach would involve targeting the NRAS mRNA. The 5′ untranslated region (5′ UTR) of the NRAS mRNA is reported to contain a G-quadruplex (G4) that regulates translation of NRAS mRNA. Stabilizing the G4 structure with small molecules could reduce NRAS protein expression in cancer cells by impacting translation. Here we report a novel class of small molecule that binds to the G4 structure located in the 5′ UTR of the NRAS mRNA. We used a small molecule microarray (SMM) screen to identify molecules that selectively bind to the NRAS-G4. Biophysical studies demonstrated that compound 18 binds reversibly to the NRAS-G4 structure with submicromolar affinity. A Luciferase based reporter assay indicated that 18 inhibits the translation of NRAS via stabilizing the NRAS-G4 in vitro but showed only moderate effects on the NRAS levels in cellulo. Rapid Amplification of cDNA Ends (RACE), RT-PCR analysis on 14 different NRAS-expressing cell lines, coupled with analysis of publicly available CAGE seq experiments, revealed that predominant NRAS transcript does not possess the G4 structure. Further analysis of published rG4 and G4 sequencing data indicated the presence of G4 structure in the promoter region of NRAS gene (DNA) but not in the mRNA. Thus, although many NRAS transcripts lack a G4 in many cell lines the broader concept of targeting folded regions within 5' UTRs to control translation remains a highly attractive strategy and this work represents an intriguing example of transcript heterogeneity impacting targetability.


2022 ◽  
Author(s):  
Yu Zhang ◽  
Min Wang ◽  
Yujin Chu ◽  
Yingkuan Han ◽  
Le Qiang ◽  
...  

The infectious diseases caused by the SARS-CoV-2 virus have been global public health threats and caught worldwide concern. Until now, rapid, low-cost and high-throughput detection of the COVID-19 virus is...


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Annie-Pier Beauregard ◽  
Brandon Hannay ◽  
Ehsan Gharib ◽  
Nicolas Crapoulet ◽  
Nicholas Finn ◽  
...  

The Pax-5 gene encodes a transcription factor that is essential for B-cell commitment and maturation. However, Pax-5 deregulation is associated with various cancer lesions, notably hematopoietic cancers. Mechanistically, studies have characterized genetic alterations within the Pax-5 locus that result in either dominant oncogenic function or haploinsufficiency-inducing mutations leading to oncogenesis. Apart from these mutations, some examples of aberrant Pax-5 expression cannot be associated with genetic alterations. In the present study, we set out to elucidate potential alterations in post-transcriptional regulation of Pax-5 expression and establish that Pax-5 transcript editing represents an important means to aberrant expression. Upon the profiling of Pax-5 mRNA in leukemic cells, we found that the 3′end of the Pax-5 transcript is submitted to alternative polyadenylation (APA) and alternative splicing events. Using rapid amplification of cDNA ends (3′RACE) from polysomal fractions, we found that Pax-5 3′ untranslated region (UTR) shortening correlates with increased ribosomal occupancy for translation. These observations were also validated using reporter gene assays with truncated 3′UTR regions cloned downstream of a luciferase gene. We also showed that Pax-5 3′UTR editing has direct repercussions on regulatory elements such as miRNAs, which in turn impact Pax-5 protein expression. More importantly, we found that advanced staging of various hematopoietic cancer lesions relates to shorter Pax-5 3′UTRs. Altogether, our findings identify novel molecular mechanisms that account for aberrant expression and function of the Pax-5 oncogene in cancer cells. These findings also present new avenues for strategic intervention in Pax-5-mediated cancers.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yue Kris Wu ◽  
Friedemann Zenke

To rapidly process information, neural circuits have to amplify specific activity patterns transiently. How the brain performs this nonlinear operation remains elusive. Hebbian assemblies are one possibility whereby strong recurrent excitatory connections boost neuronal activity. However, such Hebbian amplification is often associated with dynamical slowing of network dynamics, non-transient attractor states, and pathological run-away activity. Feedback inhibition can alleviate these effects but typically linearizes responses and reduces amplification gain. Here we study nonlinear transient amplification (NTA), a plausible alternative mechanism that reconciles strong recurrent excitation with rapid amplification while avoiding the above issues. NTA has two distinct temporal phases. Initially, positive feedback excitation selectively amplifies inputs that exceed a critical threshold. Subsequently, short-term plasticity quenches the run-away dynamics into an inhibition-stabilized network state. By characterizing NTA in supralinear network models, we establish that the resulting onset transients are stimulus selective and well-suited for speedy information processing. Further, we find that excitatory-inhibitory co-tuning widens the parameter regime in which NTA is possible in the absence of persistent activity. In summary, NTA provides a parsimonious explanation for how excitatory-inhibitory co-tuning and short-term plasticity collaborate in recurrent networks to achieve transient amplification.


2021 ◽  
Author(s):  
Samira Mokhtari ◽  
Akhtar Ali

Abstract A double-stranded RNA (dsRNA) mycovirus was isolated from airborne spores of Fusarium bullatum and was named Fusarium bullatum alternavirus 1 (FbAV1). Sequencing analysis and the rapid amplification of cDNA ends (RACE) of 5’ and 3’-end confirmed three segments: dsRNA1 (3546 nt), dsRNA2 (2511 nt) and dsRNA3 (2484 nt). BLASTN search of sequences showed that FbAV1 has 92-96% identity with Fusarium incarnatum Alternavirus 1 (FiAV1). Phylogenetic analysis of the RdRp amino acid sequences suggested that the dsRNA mycovirus in this study clustered with the newly proposed family “Alternaviridae”. This is the first report of FbAV1 mycovirus from airborne spores of a fungus F. bullatum.


2021 ◽  
Author(s):  
Shunit Olszakier ◽  
Shai Berlin

Abstract Background: Site-directed mutagenesis (SDM) is a key method in molecular biology; allowing to modify DNA sequences at single base pair resolution. Although many SDM methods have been developed, methods that increase efficiency and versatility of this process remain highly desired. Method: We present a versatile and simple method to efficiently introduce a variety of mutation schemes using the Gibson-assembly without the need for unique Gibson primers. The method entails use of standard SDM primers (shorter and completely overlapping in sequences in contrast to Gibson primers) that are separately employed with common primer (~25 bps long) for amplification of fragments flanking the site of mutagenesis, followed by rapid amplification of the Gibson-assembled product for added visualization and sequencing steps for ensuring high success rates.Results: We find that assembly of the fragments via the Gibson reaction mixture is attainable within as short as 15 minutes, despite the need for extensive digestion of the DNA (by exonuclease) past the entire SDM primer sequence (to expose non-clashing overlap between the fragments). We also find that the amount of the assembled Gibson product is too low to be visualized and assessed on standard agarose gel. We thereby introduce a short amplification step (by use of the same short primers initially employed) to 1) easily resolve whether the product (only the correct size can yield a product) has been obtained, and 2) for isolation of product for DNA-sequencing (to assess whether mutation(s) have been introduced). No other SDM method enables assessment of mutagenesis prior completion of the process. Conclusion: We employ our approach to delete, replace, insert, and degenerate sequences within target DNA sequences, specifically in DNA sequences that proved very resistant to mutagenesis by multiple other SDM methods (standard and commercial). The entire protocol spans only four days, requires minimal primers sets (as well as can be used with most in-house primers) and provides very high yields and success rates (>98%).


2021 ◽  
Vol 8 ◽  
Author(s):  
Mao-Ling Sun ◽  
Hai-Yun Lai ◽  
Na-Yu Chong ◽  
Dong-Fan Liu ◽  
Zhen-Yi Zhang ◽  
...  

Hepatitis B virus infection is not only a huge burden in the field of social health but also a major public health problem that affects the lives and health of the people. Simple, rapid, feasible detection of HBV is critical for its prevention and spread, especially in the developing countries with low-resource laboratories. To this end, we combined multienzyme isothermal rapid amplification (MIRA) and lateral flow dipstick (LFD) strip to detect HBV. A pair of primers targeting the conserved region of HBV genome was designed and used in MIRA-LFD assay. Our results found that the entire amplification of MIRA-LFD only takes 10 min at 37°C and the dilution of the amplification products was added in the LFD strip and observed by the naked eye after 10 min. The detection sensitivity of this method can reach 10 pg. The 45 clinical samples were detected by MIRA-LFD and real-time PCR. The accuracy rate of MIRA-LFD was 100%. Therefore, these characteristics of our newly developed MIRA-LFD assay make it particularly useful and suitable for detecting HBV in the resource-limited condition.


2021 ◽  
Author(s):  
Yuya Imamura ◽  
Moritsugu Oishi ◽  
Yuji Fujiwara ◽  
Hironobu Yanagisawa

Abstract Narcissus (Narcissus albidus) imported from the United States exhibited leaf chlorosis during post-entry quarantine. We employed next-generation sequencing (NGS) on symptomatic leaf samples and detected vallota mosaic virus (ValMV) belonging to the genus Potyvirus, family Potyviridae, as the viral agent. Sanger sequencing of PCR and rapid amplification of cDNA ends based on NGS contigs revealed that ValMV was 9,451 nucleotides (nt) in length, excluding the poly(A) tail. Nucleotide and amino acid (aa) sequences of the coat protein region had over 98% identity to previously reported ValMV isolates. At each of the 10 mature protein regions, however, sequence identity with other potyviruses was 49.5–71.9% nt and 18.3–78.9% aa, values that are below the species demarcation criteria for Potyviridae. Phylogenetic analysis revealed that our ValMV isolate is most closely related to known ValMV and is grouped within other potyviruses. Taken together, our results indicate that the newly isolated ValMV belongs to a distinct species of Potyvirus. This study provides the first report of the complete ValMV genome sequence and the first record of this virus from the narcissus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Michael L. Sullivan ◽  
Benjamin J. Knollenberg

Red clover leaves accumulate high levels (up to 1 to 2% of dry matter) of two caffeic acid derivatives: phaselic acid (2-O-caffeoyl-L-malate) and clovamide [N-caffeoyl-L-3,4-dihydroxyphenylalanine (L-DOPA)]. These likely play roles in protecting the plant from biotic and abiotic stresses but can also help preserve protein during harvest and storage of the forage via oxidation by an endogenous polyphenol oxidase. We previously identified and characterized, a hydroxycinnamoyl-coenzyme A (CoA):malate hydroxycinnamoyl transferase (HMT) from red clover. Here, we identified a hydroxycinnamoyl-CoA:L-DOPA hydroxycinnamoyl transferase (HDT) activity in unexpanded red clover leaves. Silencing of the previously cloned HMT gene reduced both HMT and HDT activities in red clover, even though the HMT enzyme lacks HDT activity. A combination of PCR with degenerate primers based on BAHD hydroxycinnamoyl-CoA transferase sequences and 5′ and 3′ rapid amplification of cDNA ends was used to clone two nearly identical cDNAs from red clover. When expressed in Escherichia coli, the encoded proteins were capable of transferring hydroxycinnamic acids (p-coumaric, caffeic, or ferulic) from the corresponding CoA thioesters to the aromatic amino acids L-Phe, L-Tyr, L-DOPA, or L-Trp. Kinetic parameters for these substrates were determined. Stable expression of HDT in transgenic alfalfa resulted in foliar accumulation of p-coumaroyl- and feruloyl-L-Tyr that are not normally present in alfalfa, but not derivatives containing caffeoyl or L-DOPA moieties. Transient expression of HDT in Nicotiana benthamiana resulted in the production of caffeoyl-L-Tyr, but not clovamide. Coexpression of HDT with a tyrosine hydroxylase resulted in clovamide accumulation, indicating the host species’ pool of available amino acid (and hydroxycinnamoyl-CoA) substrates likely plays a major role in determining HDT product accumulation in planta. Finally, that HDT and HMT proteins share a high degree of identity (72%), but differ substantially in substrate specificity, is promising for further investigation of structure-function relationships of this class of enzymes, which could allow the rational design of BAHD enzymes with specific and desirable activities.


Sign in / Sign up

Export Citation Format

Share Document