Combining Multiple High-Resolution In Situ Techniques to Understand Phosphorous Availability Around Rice Roots

Author(s):  
Wen Fang ◽  
Paul N. Williams ◽  
Hao Zhang ◽  
Yi Yang ◽  
Daixia Yin ◽  
...  
Author(s):  
J. A. Pollock ◽  
M. Martone ◽  
T. Deerinck ◽  
M. H. Ellisman

Localization of specific proteins in cells by both light and electron microscopy has been facilitate by the availability of antibodies that recognize unique features of these proteins. High resolution localization studies conducted over the last 25 years have allowed biologists to study the synthesis, translocation and ultimate functional sites for many important classes of proteins. Recently, recombinant DNA techniques in molecular biology have allowed the production of specific probes for localization of nucleic acids by “in situ” hybridization. The availability of these probes potentially opens a new set of questions to experimental investigation regarding the subcellular distribution of specific DNA's and RNA's. Nucleic acids have a much lower “copy number” per cell than a typical protein, ranging from one copy to perhaps several thousand. Therefore, sensitive, high resolution techniques are required. There are several reasons why Intermediate Voltage Electron Microscopy (IVEM) and High Voltage Electron Microscopy (HVEM) are most useful for localization of nucleic acids in situ.


Author(s):  
Gary Bassell ◽  
Robert H. Singer

We have been investigating the spatial distribution of nucleic acids intracellularly using in situ hybridization. The use of non-isotopic nucleotide analogs incorporated into the DNA probe allows the detection of the probe at its site of hybridization within the cell. This approach therefore is compatible with the high resolution available by electron microscopy. Biotinated or digoxigenated probe can be detected by antibodies conjugated to colloidal gold. Because mRNA serves as a template for the probe fragments, the colloidal gold particles are detected as arrays which allow it to be unequivocally distinguished from background.


2018 ◽  
Author(s):  
Grigore Moldovan ◽  
Wolfgang Joachimi ◽  
Guillaume Boetsch ◽  
Jörg Jatzkowski ◽  
Frank Altman

Abstract This work presents advanced resistance mapping techniques based on Scanning Electron Microscopy (SEM) with nanoprobing systems and the related embedded electronics. Focus is placed on recent advances to reduce noise and increase speed, such as integration of dedicated in situ electronics into the nanoprobing platform, as well as an important transition from current-sensitive to voltagesensitive amplification. We show that it is now possible to record resistance maps with a resistance sensitivity in the 10W range, even when the total resistance of the mapped structures is in the range of 100W. A reference structure is used to illustrate the improved performance, and a lowresistance failure case is presented as an example of analysis made possible by these developments.


Author(s):  
Pratik Chhapia ◽  
Harshad Patel

: Graphene based co-polymeric Nano-composites explored and trending in various applications as ascribing to its enhanced conductivity and controlled modification with wide specific surface areas. With the number of advantages of co-polymeric coating on Graphene or Graphene sheets and their derivatives, Graphene based co-polymeric Nano-composites fabricated by various techniques (deposition, ink jet, electro spinning, spin coating, in-situ techniques, etc.) and different conducting co-polymers show its exceptional chemical, mechanical, electrical and optical properties. Therefore, in the today’s world with greater quantities of various properties of co-polymer with Graphene based Nano-composites with enhanced stability, selectivity and sensitivity have been formed. In this review paper, we have particularly focused on recent advancing in fabrication of different technologies with the help of Graphene based co-polymeric Nano-composites and its various trending and future applications. Finally, on the personal standpoint; the key challenges of Graphene based co-polymeric Nano-composites are mentioned in hope to shed a light on their potential future prospects.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 143
Author(s):  
Melis S. Duyar ◽  
Alessandro Gallo ◽  
Samuel K. Regli ◽  
Jonathan L. Snider ◽  
Joseph A. Singh ◽  
...  

Molybdenum phosphide (MoP) catalyzes the hydrogenation of CO, CO2, and their mixtures to methanol, and it is investigated as a high-activity catalyst that overcomes deactivation issues (e.g., formate poisoning) faced by conventional transition metal catalysts. MoP as a new catalyst for hydrogenating CO2 to methanol is particularly appealing for the use of CO2 as chemical feedstock. Herein, we use a colloidal synthesis technique that connects the presence of MoP to the formation of methanol from CO2, regardless of the support being used. By conducting a systematic support study, we see that zirconia (ZrO2) has the striking ability to shift the selectivity towards methanol by increasing the rate of methanol conversion by two orders of magnitude compared to other supports, at a CO2 conversion of 1.4% and methanol selectivity of 55.4%. In situ X-ray Absorption Spectroscopy (XAS) and in situ X-ray Diffraction (XRD) indicate that under reaction conditions the catalyst is pure MoP in a partially crystalline phase. Results from Diffuse Reflectance Infrared Fourier Transform Spectroscopy coupled with Temperature Programmed Surface Reaction (DRIFTS-TPSR) point towards a highly reactive monodentate formate intermediate stabilized by the strong interaction of MoP and ZrO2. This study definitively shows that the presence of a MoP phase leads to methanol formation from CO2, regardless of support and that the formate intermediate on MoP governs methanol formation rate.


Author(s):  
Colin F. Wilson ◽  
Thomas Widemann ◽  
Richard Ghail

AbstractIn this paper, originally submitted in answer to ESA’s “Voyage 2050” call to shape the agency’s space science missions in the 2035–2050 timeframe, we emphasize the importance of a Venus exploration programme for the wider goal of understanding the diversity and evolution of habitable planets. Comparing the interior, surface, and atmosphere evolution of Earth, Mars, and Venus is essential to understanding what processes determined habitability of our own planet and Earth-like planets everywhere. This is particularly true in an era where we expect thousands, and then millions, of terrestrial exoplanets to be discovered. Earth and Mars have already dedicated exploration programmes, but our understanding of Venus, particularly of its geology and its history, lags behind. Multiple exploration vehicles will be needed to characterize Venus’ richly varied interior, surface, atmosphere and magnetosphere environments. Between now and 2050 we recommend that ESA launch at least two M-class missions to Venus (in order of priority): a geophysics-focussed orbiter (the currently proposed M5 EnVision orbiter – [1] – or equivalent); and an in situ atmospheric mission (such as the M3 EVE balloon mission – [2]). An in situ and orbital mission could be combined in a single L-class mission, as was argued in responses to the call for L2/L3 themes [3–5]. After these two missions, further priorities include a surface lander demonstrating the high-temperature technologies needed for extended surface missions; and/or a further orbiter with follow-up high-resolution surface radar imaging, and atmospheric and/or ionospheric investigations.


2016 ◽  
Vol 253 (12) ◽  
pp. 2544-2544
Author(s):  
Haider Rasool ◽  
Gabriel Dunn ◽  
Aidin Fathalizadeh ◽  
Alex Zettl

Chemosphere ◽  
2021 ◽  
pp. 131014
Author(s):  
Mary-Lou Tercier-Waeber ◽  
Fabio Confalonieri ◽  
Melina Abdou ◽  
Lionel Dutruch ◽  
Cécile Bossy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document