Oxygen Vacancy-Governed Opposite Catalytic Performance for C3H6 and C3H8 Combustion: The Effect of the Pt Electronic Structure and Chemisorbed Oxygen Species

Author(s):  
Yarong Fang ◽  
Huijuan Li ◽  
Qi Zhang ◽  
Chenyang Wang ◽  
Jue Xu ◽  
...  
Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 388
Author(s):  
Yuqiao Fan ◽  
Changxi Miao ◽  
Yinghong Yue ◽  
Weiming Hua ◽  
Zi Gao

In this work, Ho2O3 nanosheets were synthesized by a hydrothermal method. A series of Sr-modified Ho2O3 nanosheets (Sr-Ho2O3-NS) with a Sr/Ho molar ratio between 0.02 and 0.06 were prepared via an impregnation method. These catalysts were characterized by several techniques such as XRD, N2 adsorption, SEM, TEM, XPS, O2-TPD (temperature-programmed desorption), and CO2-TPD, and they were studied with respect to their performances in the oxidative coupling of methane (OCM). In contrast to Ho2O3 nanoparticles, Ho2O3 nanosheets display greater CH4 conversion and C2-C3 selectivity, which could be related to the preferentially exposed (222) facet on the surface of the latter catalyst. The incorporation of small amounts of Sr into Ho2O3 nanosheets leads to a higher ratio of (O− + O2−)/O2− as well as an enhanced amount of chemisorbed oxygen species and moderate basic sites, which in turn improves the OCM performance. The optimal catalytic behavior is achievable on the 0.04Sr-Ho2O3-NS catalyst with a Sr/Ho molar ratio of 0.04, which gives a 24.0% conversion of CH4 with 56.7% selectivity to C2-C3 at 650 °C. The C2-C3 yield is well correlated with the amount of moderate basic sites present on the catalysts.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 753
Author(s):  
Maria Lykaki ◽  
Sofia Stefa ◽  
Sónia A. C. Carabineiro ◽  
Miguel A. Soria ◽  
Luís M. Madeira ◽  
...  

The copper–ceria (CuOx/CeO2) system has been extensively investigated in several catalytic processes, given its distinctive properties and considerable low cost compared to noble metal-based catalysts. The fine-tuning of key parameters, e.g., the particle size and shape of individual counterparts, can significantly affect the physicochemical properties and subsequently the catalytic performance of the binary oxide. To this end, the present work focuses on the morphology effects of ceria nanoparticles, i.e., nanopolyhedra (P), nanocubes (C), and nanorods (R), on the water–gas shift (WGS) performance of CuOx/CeO2 catalysts. Various characterization techniques were employed to unveil the effect of shape on the structural, redox and surface properties. According to the acquired results, the support morphology affects to a different extent the reducibility and mobility of oxygen species, following the trend: R > P > C. This consequently influences copper–ceria interactions and the stabilization of partially reduced copper species (Cu+) through the Cu2+/Cu+ and Ce4+/Ce3+ redox cycles. Regarding the WGS performance, bare ceria supports exhibit no activity, while the addition of copper to the different ceria nanostructures alters significantly this behaviour. The CuOx/CeO2 sample of rod-like morphology demonstrates the best catalytic activity and stability, approaching the thermodynamic equilibrium conversion at 350 °C. The greater abundance in loosely bound oxygen species, oxygen vacancies and highly dispersed Cu+ species can be mainly accounted for its superior catalytic performance.


2021 ◽  
Vol 133 ◽  
pp. 105940
Author(s):  
Ru-xi Sun ◽  
Ting-yu Liu ◽  
Chun-yu Shi ◽  
Jia-mei Song ◽  
Kai-li Wu

Author(s):  
Ricci Underhill ◽  
Mark Douthwaite ◽  
Richard J. Lewis ◽  
Peter J. Miedziak ◽  
Robert D. Armstrong ◽  
...  

AbstractLow temperature oxidation of alcohols over heterogeneous catalysts is exceptionally challenging, particularly under neutral conditions. Herein, we report on an efficient, base-free method to oxidise glycerol over a 0.5%Pd-0.5%Fe/SiO2 catalyst at ambient temperature in the presence of gaseous H2 and O2. The exceptional catalytic performance was attributed to the in situ formation of highly reactive surface-bound oxygenated species, which promote the dehydrogenation on the alcohol. The PdFe bimetallic catalyst was determined to be significantly more active than corresponding monometallic analogues, highlighting the important role both metals have in this oxidative transformation. Fe leaching was confirmed to occur over the course of the reaction but sequestering experiments, involving the addition of bare carbon to the reactions, confirmed that the reaction was predominantly heterogeneous in nature. Investigations with electron paramagnetic resonance spectroscopy suggested that the reactivity in the early stages was mediated by surface-bound reactive oxygen species; no homogeneous radical species were observed in solution. This theory was further evidenced by a direct H2O2 synthesis study, which confirmed that the presence of Fe in the bimetallic catalyst neither improved the synthesis of H2O2 nor promoted its decomposition over the PdFe/SiO2 catalyst.


2013 ◽  
Vol 42 (28) ◽  
pp. 10358 ◽  
Author(s):  
Hanqing Zhao ◽  
Jiaou Wang ◽  
Linxing Zhang ◽  
Yangchun Rong ◽  
Jun Chen ◽  
...  

2022 ◽  
Vol 624 ◽  
pp. 413310
Author(s):  
Xiaorui Hu ◽  
Ren R ◽  
Yimin Xu ◽  
Zubaria Maroof

Sign in / Sign up

Export Citation Format

Share Document