temperature programmed
Recently Published Documents


TOTAL DOCUMENTS

2906
(FIVE YEARS 458)

H-INDEX

93
(FIVE YEARS 11)

2022 ◽  
Vol 9 ◽  
Author(s):  
Lada Dubnová ◽  
Rostislav Daňhel ◽  
Vendula Meinhardová ◽  
Valeriia Korolova ◽  
Lucie Smoláková ◽  
...  

A memory effect is the ability to restore the original, lamellar layered double hydroxide structure. Herein, we have described 1) the changes in the structural and basic properties of ZnAl mixed oxides during their transformation into ZnAl-reconstructed LDHs (RE-LDHs); 2) the extraordinary properties of ZnAl RE-LDHs compared to the original ZnAl LDHs; and 3) the changes of basic properties during the interaction of ZnAl RE-LDHs with atmospheric CO2. Aldol condensation was selected as probe reaction to prove the catalytic potential of ZnAl RE-LDHs. We have described a target method for preparing ZnAl RE-LDHs with a large number of basic sites. ZnAl RE-LDHs possess significantly higher furfural conversion in the aldol condensation of furfural than MOs. The structural, textural, and basic properties of the studied materials were described by temperature-programmed analysis, X-ray diffraction, N2 adsorption, temperature-programmed desorption of CO2, and in-situ diffuse reflectance spectroscopy.


2022 ◽  
Vol 32 (1) ◽  
Author(s):  
Carla S. Fermanelli ◽  
Adrián Chiappori ◽  
Liliana B. Pierella ◽  
Clara Saux

AbstractThe purpose of this work was to transform a regional biowaste into value-added chemicals and products through a modest thermo-catalytic pyrolysis process. ZSM-11 (Zeolite Socony Mobile-11) zeolites modified by nickel (Ni) incorporation (1–8 wt%) were synthesized and characterized by means of X-Ray Diffraction, Inductively Coupled Plasma Atomic Emission Spectroscopy, Infrared Fourier Transform Spectroscopy, UV–Vis Diffuse Reflectance Spectra and Temperature Programmed Reduction. Results demonstrated that Ni was mainly incorporated as oxide. These porous materials were evaluated as heterogeneous catalysts to improve biooil composition. In this sense, higher hydrocarbon yields, and quality chemicals were obtained and oxygenates were diminished. The deactivation of the most active material was studied over six cycles of reaction. In order to achieve the circular bioeconomy postulates, the obtained biochar (usually considered a residue) was further transformed through a physicochemical activation. The obtained activated biochars were extensively characterized.


2022 ◽  
Vol 334 ◽  
pp. 04008
Author(s):  
Jonathan Cavazzani ◽  
Enrico Squizzato ◽  
Elena Brusamarello ◽  
Antonella Glisenti

Ammonia exhibits interesting features as fuel to feed Solid Oxide Fuel Cell. Herein, Ni and La co-doped strontium titanate was synthetized using wet chemistry route. Ni nanoparticles emerged via exsolution in reducing environment to decorate the surface. X-Ray Diffraction measurements exhibits perovskite structure was also preserved after the exsolution, as expected. H2 – Temperature Programmed Reduction highlights the great resistance of titanates in anode operation condition. Ammonia conversion in nitrogen and hydrogen were investigated by catalytic tests. It begins to decompose at 560°C and the full yield was achieved at 720°C. Electrochemical measurements were recorded at 800°C using 10% of ammonia in Ar. They were analysed though the model of equivalent circuit and two processes were attributed. Results certify Ni exsolution strongly enhances the hydrogen oxidation and the total polarisation resistance in ammonia approaches to the one in hydrogen.


2022 ◽  
pp. 179146
Author(s):  
Cristina Silvia Stoicescu ◽  
Dana Culita ◽  
Nicolae Stanica ◽  
Florica Papa ◽  
Razvan Nicolae State ◽  
...  

2022 ◽  
Vol 964 (1) ◽  
pp. 012026
Author(s):  
Nguyen Tan Luon ◽  
Le Nguyen Quang Tu ◽  
Nguyen Quang Long

Abstract Silver nanoparticles (AgNPs) are increasingly drawing a great deal of attention because of their exclusive properties and a huge variety of applications. In recent years, using AgNPs supported on various carriers as heterogeneous catalysts has become promising for treating some toxic gases in the environment, such as HCHO. This study has successfully synthesized AgNPs onto ZSM-5 microporous zeolite and ZSM-5 mesopore-modified zeolite (Meso-ZSM-5) by ion-exchange method using sodium borohydride as a reducing agent. The resulting catalysts were then characterized by N2 adsorption-desorption method. In order to evaluate HCHO adsorption, desorption, and the surface reaction of these catalysts, temperature-programmed desorption (TPD) and temperature-programmed surface reaction (TPSR) were employed. The TPD and TPSR experiments were conducted with different relative humidity. The results showed that Ag/Meso-ZSM-5 exhibited higher catalyst activity in HCHO complete oxidation than Ag/ZSM-5 at high temperatures because of a new larger pore system within the zeolite. Furthermore, TPD and TPSR experiments provided an explanation for the poor performance of the catalysts at low temperatures, which was associated with the high adsorption capacity of the zeolite.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Antonio Jesús Fernández-Ropero ◽  
Bartosz Zawadzki ◽  
Krzysztof Matus ◽  
Wojciech Patkowski ◽  
Mirosław Krawczyk ◽  
...  

This work presents the effect of Co loading on the performance of CNR115 carbon-supported catalysts in the continuous-flow chemoselective hydrogenation of 2-methyl-2-pentenal for the obtention of 2-methylpentanal, an intermediate in the synthesis of the sedative drug meprobamate. The Co loading catalysts (2, 6, 10, and 14 wt.%) were characterized by Brunauer–Emmett–Teller (BET) surface area analysis, transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), temperature-programmed desorption of hydrogen (H2-TPD) analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy for selected samples, and have been studied as hydrogenation catalysts at different pressure and temperature ranges. The results reveal that a certain amount of Co is necessary to achieve significant conversion values. However, excessive loading affects the morphological parameters, such as the surface area available for hydrogen adsorption and the particle size, preventing an increase in conversion, despite the increased presence of Co. Moreover, the larger particle size, caused by increasing the loading, alters the chemoselectivity, favouring the formation of 2-methyl-2-pentenol and, thus, decreasing the selectivity towards the desired product. The 6 wt.% Co-loaded material demonstrates the best catalytic performance, which is related to the formation of NPs with optimum size. Almost 100% selectivity towards 2-methylpentanal was obtained for the catalysts with lower Co loading (2 and 6 wt.%).


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1561
Author(s):  
Kadir Selçuk ◽  
Hilal Kivrak ◽  
Nahit Aktaş

In this study, novel carbon nanotube-supported Mo (Mo/CNT) catalysts were prepared with the sodium borohydride reduction method for the detection of L-cysteine (L-Cys, L-C). Mo/CNT catalysts were characterized with scanning electron microscopy with elemental dispersion X-ray (EDX-SEM), X-ray diffraction (XRD), UV-vis diffuse reflectance spectrometry (UV-vis), temperature-programmed reduction (TPR), temperature programmed oxidation (TPO), and temperature-programmed desorption (TPD) techniques. The results of these advanced surface characterization techniques revealed that the catalysts were prepared successfully. Electrochemical measurements were employed to construct a voltammetric L-C sensor based on Mo/CNT catalyst by voltammetric techniques such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Further measurements were carried out with electrochemical impedance spectroscopy (EIS). Mo/CNT/GCE exhibited excellent performance for L-C detection with a linear response in the range of 0–150 µM, with a current sensitivity of 200 mA/μM cm2 (0.0142 μA/μM), the lowest detection limit of 0.25 μM, and signal-to-noise ratio (S/N = 3). Interference studies showed that the Mo/CNT/GCE electrode was not affected by D-glucose, uric acid, L-tyrosine, and L-trytophane, commonly interfering organic structures. Natural sample analysis was also accomplished with acetyl L-C. Mo/CNT catalyst is a promising material as a sensor for L-C detection.


Author(s):  
Christopher J Lee ◽  
Saumye Vashishtha ◽  
Mohammed Shariff ◽  
Fangrong Zou ◽  
Junjie Shi ◽  
...  

Abstract Undercoordinated, bridging O-atoms (Obr) are highly active as H-acceptors in alkane dehydrogenation on IrO2(110) surfaces but transform to HObr groups that are inactive toward hydrocarbons. The low C-H activity and high stability of the HObr groups cause the kinetics and product selectivity during CH4 oxidation on IrO2(110) to depend sensitively on the availability of Obr atoms prior to the onset of product desorption. From temperature programmed reaction spectroscopy (TPRS) and kinetic simulations, we identified two Obr-coverage regimes that distinguish the kinetics and product formation during CH4 oxidation on IrO2(110). Under excess Obr conditions, when the initial Obr coverage is greater than that needed to oxidize all the CH4 to CO2 and HObr groups, complete CH4 oxidation is dominant and produces CO2 in a single TPRS peak between 450 and 500 K. However, under Obr-limited conditions, nearly all the initial Obr atoms are deactivated by conversion to HObr or abstracted after only a fraction of the initially adsorbed CH4 oxidizes to CO2 and CO below 500 K. Thereafter, some of the excess CHx groups abstract H and desorb as CH4 above ~500 K while the remainder oxidize to CO2 and CO at a rate that is controlled by the rate at which Obr atoms are regenerated from HObr during the formation of CH4 and H2O products. We also show that chemisorbed O-atoms (“on-top O”) on IrO2(110) enhance CO2 production below 500 K by efficiently abstracting H from Obr atoms and thereby increasing the coverage of Obr atoms available to completely oxidize CHx groups at low temperature. Our results provide new insights for understanding factors which govern the kinetics and selectivity during CH4 oxidation on IrO2(110) surfaces.


Sign in / Sign up

Export Citation Format

Share Document