Free Chlorine Disinfection Mechanisms of Rotaviruses and Human Norovirus Surrogate Tulane Virus Attached to Fresh Produce Surfaces

2019 ◽  
Vol 53 (20) ◽  
pp. 11999-12006 ◽  
Author(s):  
Miyu Fuzawa ◽  
Elbashir Araud ◽  
Jianrong Li ◽  
Joanna L. Shisler ◽  
Thanh H. Nguyen
2015 ◽  
Vol 81 (14) ◽  
pp. 4791-4800 ◽  
Author(s):  
Erin DiCaprio ◽  
Anastasia Purgianto ◽  
Jianrong Li

ABSTRACTHuman norovirus (NoV) is the major causative agent of fresh-produce-related outbreaks of gastroenteritis; however, the ecology and persistence of human NoV in produce systems are poorly understood. In this study, the effects of abiotic and biotic stresses on the internalization and dissemination of two human NoV surrogates (murine norovirus 1 [MNV-1] and Tulane virus [TV]) in romaine lettuce were determined. To induce abiotic stress, romaine lettuce was grown under drought and flood conditions that mimic extreme weather events, followed by inoculation of soil with MNV-1 or TV. Independently, lettuce plants were infected with lettuce mosaic virus (LMV) to induce biotic stress, followed by inoculation with TV. Plants were grown for 14 days, and viral titers in harvested tissues were determined by plaque assays. It was found that drought stress significantly decreased the rates of both MNV-1 and TV internalization and dissemination. In contrast, neither flood stress nor biotic stress significantly impacted viral internalization or dissemination. Additionally, the rates of TV internalization and dissemination in soil-grown lettuce were significantly higher than those for MNV-1. Collectively, these results demonstrated that (i) human NoV surrogates can be internalized via roots and disseminated to shoots and leaves of romaine lettuce grown in soil, (ii) abiotic stress (drought) but not biotic stress (LMV infection) affects the rates of viral internalization and dissemination, and (iii) the type of virus affects the efficiency of internalization and dissemination. This study also highlights the need to develop effective measures to eliminate internalized viruses in fresh produce.


2018 ◽  
Vol 69 ◽  
pp. 25-32 ◽  
Author(s):  
Zhihong Yang ◽  
Heather Chambers ◽  
Erin DiCaprio ◽  
Gary Gao ◽  
Jianrong Li

2012 ◽  
Vol 78 (17) ◽  
pp. 6143-6152 ◽  
Author(s):  
Erin DiCaprio ◽  
Yuanmei Ma ◽  
Anastasia Purgianto ◽  
John Hughes ◽  
Jianrong Li

ABSTRACTFresh produce is a major vehicle for the transmission of human norovirus (NoV) because it is easily contaminated during both pre- and postharvest stages. However, the ecology of human NoV in fresh produce is poorly understood. In this study, we determined whether human NoV and its surrogates can be internalized via roots and disseminated to edible portions of the plant. The roots of romaine lettuce growing in hydroponic feed water were inoculated with 1 × 106RNA copies/ml of a human NoV genogroup II genotype 4 (GII.4) strain or 1 × 106to 2 × 106PFU/ml of animal caliciviruses (Tulane virus [TV] and murine norovirus [MNV-1]), and plants were allowed to grow for 2 weeks. Leaves, shoots, and roots were homogenized, and viral titers and/or RNA copies were determined by plaque assay and/or real-time reverse transcription (RT)-PCR. For human NoV, high levels of viral-genome RNA (105to 106RNA copies/g) were detected in leaves, shoots, and roots at day 1 postinoculation and remained stable over the 14-day study period. For MNV-1 and TV, relatively low levels of infectious virus particles (101to 103PFU/g) were detected in leaves and shoots at days 1 and 2 postinoculation, but virus reached a peak titer (105to 106PFU/g) at day 3 or 7 postinoculation. In addition, human NoV had a rate of internalization comparable with that of TV as determined by real-time RT-PCR, whereas TV was more efficiently internalized than MNV-1 as determined by plaque assay. Taken together, these results demonstrated that human NoV and animal caliciviruses became internalized via roots and efficiently disseminated to the shoots and leaves of the lettuce.


2015 ◽  
Vol 81 (8) ◽  
pp. 2727-2734 ◽  
Author(s):  
Erin DiCaprio ◽  
Doug Culbertson ◽  
Jianrong Li

ABSTRACTHuman norovirus (NoV) is the leading cause of foodborne disease in the United States, and epidemiological studies have shown that fresh produce is one of the major vehicles for the transmission of human NoV. However, the mechanisms of norovirus contamination and persistence in fresh produce are poorly understood. The objective of this study is to determine whether human NoV surrogates, murine norovirus (MNV-1) and Tulane virus (TV), can attach and become internalized and disseminated in strawberries grown in soil. The soil of growing strawberry plants was inoculated with MNV-1 and TV at a level of 108PFU/plant. Leaves and berries were harvested over a 14-day period, and the viral titer was determined by plaque assay. Over the course of the study, 31.6% of the strawberries contained internalized MNV-1, with an average titer of 0.81 ± 0.33 log10PFU/g. In comparison, 37.5% of strawberries were positive for infectious TV, with an average titer of 1.83 ± 0.22 log10PFU/g. A higher percentage (78.7%) of strawberries were positive for TV RNA, with an average titer of 3.15 ± 0.51 log10RNA copies/g as determined by real-time reverse transcriptase quantitative PCR (RT-qPCR). In contrast, no or little virus internalization and dissemination were detected when TV was inoculated into bell peppers grown in soil. Collectively, these data demonstrate (i) virally contaminated soils can lead to the internalization of virus via plant roots and subsequent dissemination to the leaf and fruit portions of growing strawberry plants and (ii) the magnitude of internalization is dependent on the type of virus and plant.


2021 ◽  
Author(s):  
Chamteut Oh ◽  
Ratul Chowdhury ◽  
Laxmicharan Samineni ◽  
Joanna L Shisler ◽  
Manish Kumar ◽  
...  

AbstractProper disinfection of harvested food and water is critical to minimize infectious disease. Grape seed extract (GSE), a commonly used health supplement, is a mixture of plant-derived polyphenols. Polyphenols possess anti-microbial and -fungal properties, but anti-viral effects are not well-known. Here we show that GSE outperformed chemical disinfectants (e.g., free chlorine and peracetic acids) in inactivating Tulane virus, a human norovirus surrogate. GSE induced virus aggregation, an event that correlated with a decrease in virus titers. This aggregation and disinfection was not reversible. Molecular docking simulations indicate that polyphenols potentially formed hydrogen bonds and strong hydrophobic interactions with specific residues in viral capsid proteins. Together, these data suggest that polyphenols physically associate with viral capsid proteins to aggregate viruses as a means to inhibit virus entry into the host cell. Plant-based polyphenols like GSE are an attractive alternative to chemical disinfectants to remove infectious viruses from water or food.ImportanceHuman noroviruses are major food- and water-borne pathogens, causing approximately 20% of all cases of acute gastroenteritis cases in developing and developed countries. Proper sanitation or disinfection are critical strategies to minimize human norovirus-caused disease until a reliable vaccine is created. Grape seed extract (GSE) is a mixture of plant-derived polyphenols that is used as a health supplement. Polyphenols are known for antimicrobial, antifungal, and antibiofilm activities, but antiviral effects are not well-known. In studies here, plant-derived polyphenols outperformed chemical disinfectants (e.g., free chlorine and peracetic acids) in inactivating Tulane virus, a human norovirus surrogate. Based on data from additional molecular assays and molecular docking simulations, the current model is that the polyphenols in GSE bind to the Tulane virus capsid, an event that triggers virion aggregation. It is thought that this aggregation prevents Tulane virus from entering host cells.


Author(s):  
Candace Barnes ◽  
Rebecca Barber ◽  
Keith R. Schneider ◽  
Michelle D. Danyluk ◽  
Anita C. Wright ◽  
...  

Human norovirus (HuNoV) is the leading causative agent of foodborne outbreaks and is associated with the second most prevalent cause of waterborne infections in the United States. The goal of this research was to investigate the antiviral activity of chitosan microparticles (CM) against HuNoV GII.4 Sydney and its cultivable surrogate, Tulane virus (TuV), in suspensions mimicking fecally-contaminated water. CM was prepared by crosslinking chitosan molecules with sodium sulfate, and then its anti-noroviral activity was assessed using infectivity assay on TuV and RT-qPCR on TuV and HuNoV. A 3% CM suspension in PBS (pH 7.2) showed binding to TuV particles but with a negligible impact on virus infectivity (p>0.05). TuV and HuNoV suspended in fecal suspensions showed a 1.5-log10 reduction in genomic copies per ml following a 10-min contact time (p<0.05). Despite the negligible impact on viral infectivity, CM moderately binds to virus particles and helps purify environmental water by removing infectious virus particles. In this study, TuV served as a suitable surrogate for HuNoV by showing a similar log10 reduction in fecal suspension. Overall, the outcomes of thisresearch highlight the potential application of CM as a novel, natural treatment to minimize the spread of water-transmitted viral pathogens.


2018 ◽  
Vol 90 (7) ◽  
pp. 623-633 ◽  
Author(s):  
Keisuke Ikehata ◽  
Yuan Li ◽  
Andrew T. Komor ◽  
Gregory W. Gibson

2020 ◽  
Vol 83 (4) ◽  
pp. 637-643
Author(s):  
JOSHUA B. GURTLER

ABSTRACT Contamination of fresh produce with the foodborne pathogens Salmonella enterica, Listeria monocytogenes, and Escherichia coli O157:H7 continues to be problematic, resulting in outbreaks of foodborne illness and costly corporate recalls. Various individual concentrations of citric or lactic acids (0.35 to 0.61%) or isopropyl citrate (0.16 to 0.54%) combined with two generally recognized as safe surfactants, 0.025% sodium-2-ethyl-hexyl sulfate and 0.025% sodium dodecylbenzene-sulfonate, were tested against these three pathogens in suspension and when inoculated and dried on the surface of grape tomatoes. The efficacy of sodium hypochlorite (NaClO; at 46 ppm) was also evaluated under dirty and clean conditions in suspension after addition of 0.3 or 0.03% bovine serum albumin, respectively, as an organic load. NaClO (46 ppm) inactivated the three pathogens in suspension by <0.76 log CFU/mL after 5 min in the presence of 0.3% bovine serum albumin, whereas 9 and 15 ppm of free chlorine inactivated the pathogens by 0.64 and 2.77 log CFU/mL, respectively, after 5 min under clean conditions. Isopropyl citrate (0.16% acidulant) plus 0.05% total concentration of the two surfactants inactivated the pathogens in suspension by up to 7.0 log CFU/mL within 2 min. When applied to grape tomatoes for 2 min, 0.54% isopropyl citrate plus 0.025% concentrations of each of the two surfactants reduced Salmonella, E. coli O157:H7, and L. monocytogenes by as much as ca. 5.47, 4.89, and 4.19 log CFU/g, respectively. These reductions were significantly greater than those achieved with 49 ppm of free chlorine. Citric acid and lactic acid plus surfactant washes achieved greater inactivation than water-only washes, reducing Salmonella, E. coli O157:H7, and L. monocytogenes on tomatoes by up to 4.90, 4.37, and 3.98 log CFU/g, respectively. These results suggest that these combinations of acidulants and surfactants may be an effective tool for preventing cross-contamination during the washing of grape tomatoes, for reducing pathogens on the fruit itself, and as an alternative to chlorine for washing fresh produce. HIGHLIGHTS


Sign in / Sign up

Export Citation Format

Share Document