Characterization of the internal motions of Escherichia coli ribonuclease HI by a combination of 15N-NMR relaxation analysis and molecular dynamics simulation: examination of dynamic models

Biochemistry ◽  
1995 ◽  
Vol 34 (20) ◽  
pp. 6587-6601 ◽  
Author(s):  
Kazuhiko Yamasaki ◽  
Minoru Saito ◽  
Motohisa Oobatake ◽  
Shigenori Kanaya
2013 ◽  
Vol 51 (25-27) ◽  
pp. 5248-5253 ◽  
Author(s):  
Takashi Shimoyama ◽  
Tomohisa Yoshioka ◽  
Hiroki Nagasawa ◽  
Masakoto Kanezashi ◽  
Toshinori Tsuru

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Albert A. Smith ◽  
Alexander Vogel ◽  
Oskar Engberg ◽  
Peter W. Hildebrand ◽  
Daniel Huster

AbstractBiomolecular function is based on a complex hierarchy of molecular motions. While biophysical methods can reveal details of specific motions, a concept for the comprehensive description of molecular dynamics over a wide range of correlation times has been unattainable. Here, we report an approach to construct the dynamic landscape of biomolecules, which describes the aggregate influence of multiple motions acting on various timescales and on multiple positions in the molecule. To this end, we use 13C NMR relaxation and molecular dynamics simulation data for the characterization of fully hydrated palmitoyl-oleoyl-phosphatidylcholine bilayers. We combine dynamics detector methodology with a new frame analysis of motion that yields site-specific amplitudes of motion, separated both by type and timescale of motion. In this study, we show that this separation allows the detailed description of the dynamic landscape, which yields vast differences in motional amplitudes and correlation times depending on molecular position.


Sign in / Sign up

Export Citation Format

Share Document