Dynamics and Morphological Outcomes in Thin-Film Spherical Crystallization of Glycine from Microfluidic Emulsions: Experimental Studies and Modeling

2014 ◽  
Vol 14 (7) ◽  
pp. 3485-3492 ◽  
Author(s):  
Arpad I. Toldy ◽  
Lu Zheng ◽  
Abu Zayed Md. Badruddoza ◽  
T. Alan Hatton ◽  
Saif A. Khan
2020 ◽  
Vol 96 (3s) ◽  
pp. 420-423
Author(s):  
Д.А. Жуков ◽  
В.В. Амеличев ◽  
Д.В. Костюк ◽  
А.И. Крикунов ◽  
Д.В. Васильев ◽  
...  

Представлены результаты экспериментальных исследований магнитострикционных и магниторезистивных свойств тонкопленочных многослойных наноструктур Ta/FeNiCo/CoFe/Ta и Ta/FeNiCo/CoFeВ/Ta на окисленных кремниевых подложках диаметром 100 мм. Экспериментально установлена зависимость величины анизотропного магниторезистивного эффекта от величины механических деформаций в экспериментальных образцах наноструктур. The paper presents the results of experimental studies of the magnetostriction and magnetoresistive properties of thin-film multilayer nanostructures Ta/FeNiCo/CoFe/Ta and Ta/FeNiCo/CoFeB/Ta on oxidized silicon substrates with a diameter of 100 mm. The dependence of the magnitude of the anisotropic magnetoresistive effect on the magnitude of mechanical strains in experimental samples of nanostructures has been experimentally established.


1995 ◽  
Vol 403 ◽  
Author(s):  
K. Barmak ◽  
C. Michaelsent ◽  
J. Rickman ◽  
M. Dahmstt

AbstractIt is a well known fact that the properties and performance of polycrystalline materials, including polycrystalline thin films, are strongly affected by the grain structure. Therefore, in treating reactive phase formation in these films, it is (or it will inevitably be) necessary to quantify the grain structure of reactant and product phases and its evolution during the course of the reaction. Theoretical models and the conventional view of thin film reactions, however, have been largely extensions, to small and finite dimensions, of theories and descriptions developed for bulk diffusion couples. These models and descriptions primarily focus on the growth stage and to a much lesser extent on the nucleation stage. Consequently, these models and descriptions are not able to treat the development of product phase grain structure. Recent calorimetric investigations of several thin film systems demonstrate the importance of nucleation kinetics (and hence nucleation barriers) in product phase formation and provide quantitative measures of the thermodynamics and kinetics of formation of the product phases, thereby allowing some degree of comparison with reaction models. Furthermore, microstructural investigations of thin-film reactions demonstrate the non-planarity of the growth front and highlight the role of reactant-phase grain boundaries. In this paper, a summary of these experimental studies and recent theoretical treatments, which combine nucleation and growth in an integrated manner, is presented, with particular emphasis on the Nb/Al system. These experiments and models lead to a new view of reactive phase formation and grain structure evolution as one in which the latter is an integral part of the former. Based on this view, directions for future research are discussed.


Author(s):  
G.V. BARSUKOV ◽  
A.V. KIRICHEK ◽  
K.F. SELEMENEV ◽  
E.M. SELEMENEVA

The article deals with the problems of increasing the efficiency of centrifugal processing with a rigid contact. It is shown that when materials with different properties interact, it is energetically "advantageous" to have a discontinuous contact between interacting elements of the surfaces of the tool and the part. It has been established that epilating the working surfaces of the tool significantly changes the nature of the resistance to adhesive interaction, the effectiveness of which is significantly increased when using cutting fluids (lubricating and cooling technological media).


2018 ◽  
Vol 386 ◽  
pp. 250-255 ◽  
Author(s):  
Sergey Dubkov ◽  
Alexey Trifonov ◽  
Yuri Shaman ◽  
Evgeny Kitsyuk ◽  
Andrey Savitskiy ◽  
...  

This paper presents the results of experimental studies of arrays of Ag0.52Au0.48 alloy nanoparticles. Arrays were formed by vacuum-thermal evaporation on an unheated substrate and subsequent low-temperature vacuum annealing. The TEM images of the obtained nanoparticle arrays and corresponding histograms of particle size distribution are shown. The transmission spectra of these arrays showing the displacement of the plasma frequency as a function of the mean particle size are obtained. Spectra of Raman scattering from a thin film of amorphous carbon in presence of AgAu particles are obtained, and a comparative analysis of Raman scattering amplification factors for pure Ag, pure Au and Ag0.52Au0.48 alloy nanoparticles is presented.


Author(s):  
S. B. Liang ◽  
G. P. Xu

Self-sustainable motions of the slug flow in oscillating heat pipes have been investigated in the paper. Thin film condensation in the capillary channels of the condenser of the oscillating heat pipes was studied. Instability of the thin liquid film on the characteristics of heat pipes was analysed. The extra thermal resistance caused by the thickness of the thin liquid film was taken into account for the numerical simulation of the oscillatory motions of the slug flow in the heat pipes. Saturated temperatures and pressures of the working fluid in the condenser were obtained. Thermoacoustic theory was applied to calculate heat transport through the adiabatic section of the heat pipes. Experimental studies were carried out to understand the heat transfer behaviours of heat pipes. One heat pipe with the working fluid of HFC-134a was evaluated. The heat pipe is made of aluminium plate and has the width of 50 mm and thickness of 1.9 mm. Numerical and experimental results relevant to the heat transport capability of the heat pipe were analysed and compared.


2021 ◽  
Vol 2 (5 (110)) ◽  
pp. 23-31
Author(s):  
Roman Dunets ◽  
Bogdan Dzundza ◽  
Liliia Turovska ◽  
Myroslav Pavlyuk ◽  
Omelian Poplavskyi

Methods for studying thermoelectric parameters of semiconductors that are optimal for the implementation of software and hardware have been analyzed and selected. It is based on the Harman method and its modifications, adapted for pulse measurements, which are convenient to implement on a modern element base. An important advantage of these methods is the absence of the need for accurate measurements of heat fluxes, which greatly simplifies and reduces the time for conducting experimental research. The required operating ranges for the voltage 10 µV–1 V, for the current 10 µA–300 mA and the element base performance at the processing level of 40–200 million samples per second have been determined. Structural and electrical circuits, as well as software for a specialized computer system for studying thermoelectric parameters of both bulk and thin-film thermoelectric materials, and express analysis of the operational characteristics of finished modules have been developed. It has been shown that the proposed scheme copes well with the task. And the use of FPGA and 32-bit microcontrollers provide sufficient processing speed up to 200 MSPS and the necessary synchronization modes for the implementation of the Harman pulse method even when studying films of nanometer thickness. Experimental studies of both bulk thermoelectric modules based on Bi2Te3 and thin-film thermoelectric material based on PbTe have been carried out. The effectiveness of the developed tools and techniques has been shown, which made it possible to more than halve the time for sample preparation and experiment. Based on the presented models, all the main thermoelectric and operational parameters have been determined, in particular, electrical conductivity, Seebeck coefficient, thermal conductivity, thermoelectric figure of merit. As a result of the development of specialized computer tools, it was possible to reduce the labor intensity of the process of measuring the main electrical and operational parameters of semiconductor thermoelectric materials and energy conversion modules based on them, as well as to automate the process of defects identification of thermoelectric modules. The labor intensity of the research process has decreased not only due to the automation of the measurement process, but also due to an optimized technique that allows research on a sample of one configuration, since the manufacture and preparation of samples are the most laborious


1992 ◽  
Vol 280 ◽  
Author(s):  
Qiuming Yu ◽  
Paulette Clancy

ABSTRACTThe equilibrium structure of a variety of Si1−xGex/Si heterostructures have been simulated by Molecular Dynamics, modeled by the Stillinger-Weber potential, to investigate the effect of strain on the surfaces of SiGe thin Alms. It was found that the strain in SiGe/Si(100) thin films was relaxed by the segregation of Ge to the surface. Rebonding of sub-surface atoms into dimers in the presence of a vacancy or cluster of vacancies above them was observed in the ensuing surface reconstruction. For SiGe/Si, the amount of “re-bonded missing dimers” in the top two layers increased with increasing Ge composition. But for Ge/Si(100), a V-shaped twinning defect was observed in the Ge thin film. To further investigate the effect of strain on surface reconstruction, bulk Si and Ge structures were also studied. For bulk Si, several rebonded missing dimers were found at the surface, while for bulk Ge(100), the surface showed a typical 2×1 reconstruction. All these findings corroborate recent experimental studies and theoretical predictions.


Sign in / Sign up

Export Citation Format

Share Document