Heterogeneous reactions of hydrogen atoms and methyl radicals with a diamond surface in the 300-1133 K temperature range

1993 ◽  
Vol 97 (45) ◽  
pp. 11787-11796 ◽  
Author(s):  
Lev N. Krasnoperov ◽  
Ilia J. Kalinovski ◽  
Hae Nuh Chu ◽  
David Gutman
1960 ◽  
Vol 38 (8) ◽  
pp. 1339-1345 ◽  
Author(s):  
R. K. Brinton

The reaction of methyl radicals with a group of amines and amine-like compounds has been investigated in the temperature range 125° to 157 °C. The abstraction activation energies of hydrogen atoms from these compounds, the corresponding pre-exponential factors, and the actual reaction rates indicate that the N—H hydrogen atoms are more labile than the C—H atoms in these compounds.


1968 ◽  
Vol 46 (14) ◽  
pp. 2451-2454
Author(s):  
G. Greig ◽  
J. C. J. Thynne

Trideuteromethyl radicals have been reacted in the vapor phase with allyl formate and the principal reaction over the temperature range 100–250 °C has been shown to be the displacement reaction[Formula: see text][Formula: see text]Hydrogen atoms generated by this decomposition also react readily to produce propylene by the reaction[Formula: see text]


2008 ◽  
Vol 373-374 ◽  
pp. 108-112
Author(s):  
Yu Jun Zhang ◽  
Guang Neng Dong ◽  
Jun Hong Mao ◽  
You Bai Xie

The novel frictional properties of hydrogenated DLC (Diamond-like Carbon) films have been reported for nearly ten years. But up to now, researchers still haven’t known the exact mechanism resulting in the super-low frictional performance of hydrogenated DLC films. Especially they have little knowledge on the molecular configuration and structural properties of these kinds of films. In this paper, CH3 radicals with different impact energies are selected as source species to deposit DLC films on diamond (100) by molecular dynamics simulation. Results show hydrogenated DLC films can be successfully obtained when impact energy is in an appropriate scope that is no less than 20eV. The depositing processes involve impinging diamond surface and bonding procedure. Some atoms, instead of bonding with substrate atoms, fly away from the diamond surface. Only suitable impact energy can improve the growth of the film. Within 30eV to 60eV, the maximum deposition ratio is attained. In addition, when carbon atoms act as the deposition sources, the deposition ratio is relatively higher. Furthermore, the authors find that species with higher concentration of carbon atoms in deposition sources lead to a better deposition rate. Carbon atoms are more reactive than hydrogen atoms. Then the relative densities of DLC films are calculated. The density curves indicate that the structures of the films vary obviously as the impact energy augments. The average relative density is generally monotone increase with the increment of impact energy. The hybridization of carbon atoms greatly affects the properties of hydrogenated DLC films. The transition between sp2 and sp3 will result in the graphitization and reduce the frictional coefficient when DLC films are used as tribo-pair in friction.


Natural diamonds have been heated in the temperature range of 1850 to 2000 °C at zero pressure and the rates at which diamond transforms to graphite measured. For {111} and {110} surfaces activation energies of 253+18 and 174+12 kcal mol -1 (1159 + 75 and 728 + 50 kJ/mol) respectively have been obtained. Diamonds have also been heated in the temperature range of 1950 to 2200 °C under a pressure of 48 + 3 kbar (4.8 + 0.3 GPa) and an activation volume of about 10 cm 3 mol -1 obtained for both {111} and {110} surfaces. It is proposed that the rate controlling process in the graphitization of diamond is the detachment of a single atom from the diamond surface. This is contrary to previous proposals in which the detachment of groups of atoms have been considered to be the rate-controlling process. In the present work, it is suggested that the rate-controlling step for graphitization is the detachment of a triply bonded atom from a {111} surface and of a doubly bonded atom from a {110} surface.


1991 ◽  
Vol 69 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Alain R. Bossard ◽  
Margaret H. Back

Mixtures of ethylene and methane have been pyrolyzed in the temperature range 925–1023 K for the purpose of converting methane to higher hydrocarbons. Addition of methane to thermally-reacting ethylene increases the rate of formation of propylene but decreases the rates of formation of the other major products, ethane, acetylene, and butadiene. Hydrogen abstraction from methane is a major propagation reaction and causes a shift in the radical distribution from ethyl and vinyl radicals, the main radicals in the pyrolysis reactions of ethylene alone, to methyl radicals, which lead to the formation of propylene. At 1023 K with a pressure of ethylene of 6.5 Torr and of methane of 356 Torr, 1.5 mol of methane is converted to higher molecular weight products for every mole of ethylene reacted. The rate of conversion of methane in the homogeneous system is lower than in catalytic reactions but the product is entirely hydrocarbon and no methane is lost to carbon monoxide or carbon dioxide. Key words: methane, ethylene, kinetics, pyrolysis, fuels.


1964 ◽  
Vol 17 (12) ◽  
pp. 1329 ◽  
Author(s):  
MFR Mulcahy ◽  
DJ Williams ◽  
JR Wilmshurst

The kinetics of abstraction of hydrogen atoms from the methyl group of the toluene molecule by methyl radicals at 430-540�K have been determined. The methyl radicals were produced by pyrolysis of di-t-butyl peroxide in a stirred-flow system. The kinetics ,agree substantially with those obtained by previous authors using photolytic methods for generating the methyl radicals. At toluene and methyl-radical concentrations of about 5 x 10-7 and 10-11 mole cm-3 respectively the benzyl radicals resulting from the abstraction disappear almost entirely by combination with methyl radicals at the methylenic position. In this respect the benzyl radical behaves differently from the iso-electronic phenoxy radical, which previous work has shown to combine with a methyl radical mainly at ring positions. The investigation illustrates the application of stirred-flow technique to the study of the kinetics of free-radical reactions.


1939 ◽  
Vol 17b (12) ◽  
pp. 371-384 ◽  
Author(s):  
E. W. R. Steacie ◽  
N. A. D. Parlee

The reaction of hydrogen atoms with propane has been investigated over the temperature range 30° to 250 °C. by the Wood-Bonhoeffer method. The products are solely methane at low temperatures, and methane, ethane, and ethylene at higher temperatures.It is concluded that the results can be explained only by the assumption that the reaction[Formula: see text]is of importance. The bearing of this on the Rice-Herzfeld mechanisms is discussed. The activation energy of the reaction is 10 ± 2 Kcal.The main steps in the postulated mechanism are:Primary Reaction[Formula: see text]Secondary Reactions at Low Temperatures[Formula: see text]Additional Secondary Reactions at High Temperatures[Formula: see text]The reaction of deuterium atoms with propane was also investigated. It was found that the methane and ethane produced were highly deuterized, while the propane was not appreciably exchanged.


A detailed study has been made of the products from the reaction between hydrogen atoms and ethylene in a discharge-flow system at 290 ± 3 K. Total pressures in the range 8 to 16 Torr (1100 to 2200 Nm -2 ) of argon were used and the hydrogen atom and ethylene flow rates were in the ranges 5 to 10 and 0 to 20 μ mol s -1 , respectively. In agreement with previous work, the main products are methane and ethane ( ~ 95%) together with small amounts of propane and n -butane, measurements of which are reported for the first time. A detailed mechanism leading to formation of all the products is proposed. It is shown that the predominant source of ethane is the recombination of two methyl radicals, the rate of recombination of a hydrogen atom with an ethyl radical being negligible in comparison with the alternative, cracking reaction which produces two methyl radicals. A set of rate constants for the elementary steps in this mechanism has been derived with the aid of computer calculations, which gives an excellent fit with the experimental results. In this set, the values of the rate constant for the addition of a hydrogen atom to ethylene are at the low end of the range of previously measured values but are shown to lead to a more reasonable value for the rate constant of the cracking reaction of a hydrogen atom with an ethyl radical. It is shown that the recombination reaction of a hydrogen atom with a methyl radical, the source of methane, is close to its third-order region.


Sign in / Sign up

Export Citation Format

Share Document