Adsorption of Direct Yellow 12 onto Ordered Mesoporous Carbon and Activated Carbon

2009 ◽  
Vol 54 (11) ◽  
pp. 3043-3050 ◽  
Author(s):  
Fengling Liu ◽  
Jiahong Wang ◽  
Liyuan Li ◽  
Yun Shao ◽  
Zhaoyi Xu ◽  
...  
RSC Advances ◽  
2014 ◽  
Vol 4 (104) ◽  
pp. 60168-60175 ◽  
Author(s):  
Qiaoli Peng ◽  
Zehui Zhang ◽  
Ze'ai Huang ◽  
Wei Ren ◽  
Jie Sun

N-Doped ordered mesoporous carbon (N-OMC) was successfully prepared using dicyandiamide (C2H4N4) as the nitrogen source and was grafted onto activated carbon fibres (ACFs) to form carbon composites (ACF@N-OMC).


2011 ◽  
Vol 30 (4) ◽  
pp. 793-800 ◽  
Author(s):  
Fengling Liu ◽  
Zhaoyi Xu ◽  
Haiqin Wan ◽  
Yuqiu Wan ◽  
Shourong Zheng ◽  
...  

2019 ◽  
Vol 3 (1) ◽  
pp. 30 ◽  
Author(s):  
Katarzyna Jedynak ◽  
Dariusz Wideł ◽  
Nina Rędzia

In this work, adsorption of rhodamine B (RB) and acid yellow 17 (AY17) was investigated on ordered mesoporous carbon material obtained by soft-templating method with hydrochloric acid (ST-A). For comparison, the adsorption process on commercial activated carbon CWZ-22 was also carried out. The sorbents were characterized by nitrogen adsorption/desorption isotherms and scanning electron microscopy. Langmuir and Freundlich adsorption isotherm models were applied to simulate the equilibrium data of RB and AY17. Adsorption isotherm data could be better described by the Langmuir model than the Freundlich model. The adsorption kinetics of RB and AY17 on studied carbons could be well depicted by using pseudo-second-order kinetic modeling. The adsorption capacity increased with temperature increase in the range of 298–315 K. In the whole diffusion process, the intraparticle diffusion was involved, but not the whole rate-controlling step. The calculated thermodynamic parameters, including Gibbs free energy (∆G), enthalpy (∆H), and entropy (ΔS) suggested that adsorption processes of RB and AY17 on ST-A and CWZ-22 were endothermic and spontaneous.


Carbon ◽  
2020 ◽  
Vol 170 ◽  
pp. 236-244
Author(s):  
Wonhee Kim ◽  
Jiyeon Lee ◽  
Seungmin Lee ◽  
KwangSup Eom ◽  
Chanho Pak ◽  
...  

2021 ◽  
pp. 103186
Author(s):  
Asna Mariyam ◽  
Jyoti Mittal ◽  
Farzeen Sakina ◽  
Richard T. Baker ◽  
Ashok K. Sharma ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4349
Author(s):  
Anupriya K. Haridas ◽  
Natarajan Angulakshmi ◽  
Arul Manuel Stephan ◽  
Younki Lee ◽  
Jou-Hyeon Ahn

Sodium-ion batteries (SIBs) are promising alternatives to lithium-based energy storage devices for large-scale applications, but conventional lithium-ion battery anode materials do not provide adequate reversible Na-ion storage. In contrast, conversion-based transition metal sulfides have high theoretical capacities and are suitable anode materials for SIBs. Iron sulfide (FeS) is environmentally benign and inexpensive but suffers from low conductivity and sluggish Na-ion diffusion kinetics. In addition, significant volume changes during the sodiation of FeS destroy the electrode structure and shorten the cycle life. Herein, we report the rational design of the FeS/carbon composite, specifically FeS encapsulated within a hierarchically ordered mesoporous carbon prepared via nanocasting using a SBA-15 template with stable cycle life. We evaluated the Na-ion storage properties and found that the parallel 2D mesoporous channels in the resultant FeS/carbon composite enhanced the conductivity, buffered the volume changes, and prevented unwanted side reactions. Further, high-rate Na-ion storage (363.4 mAh g−1 after 500 cycles at 2 A g−1, 132.5 mAh g−1 at 20 A g−1) was achieved, better than that of the bare FeS electrode, indicating the benefit of structural confinement for rapid ion transfer, and demonstrating the excellent electrochemical performance of this anode material at high rates.


Sign in / Sign up

Export Citation Format

Share Document