carbon composite
Recently Published Documents


TOTAL DOCUMENTS

3451
(FIVE YEARS 958)

H-INDEX

92
(FIVE YEARS 25)

Author(s):  
Zhenghe Zhang ◽  
Lisheng Cheng ◽  
Tianyang Sheng ◽  
Jingchao Yu ◽  
Jing Tan ◽  
...  

2022 ◽  
Vol 1049 ◽  
pp. 240-247
Author(s):  
Ivan S. Zherebcov ◽  
Valeriy V. Savin ◽  
Alexander V. Osadchy ◽  
Victoriia A. Chaika ◽  
Vadim Borkovskih

Scientific research and the search for new technologies to increase the level of mechanical and high-temperature properties are ongoing. The article discusses the technology of using carbon materials, pyrolysis and impregnation with phenol-formaldehyde resins. It is shown that the proposed technology makes it possible to achieve a sufficient level of mechanical properties when using low-modulus carbon fabrics after pyrolytic treatment as a prepreg at a temperature treatment no higher than 900 K. Pillowcase and resole phenol-formaldehyde resins were used to impregnate the prepreg. The proposed technology also allows the introduction of alloying additives into the system to improve the properties. An example of the introduction of nitrogen into a composite by adding urotropine to a phenol-formaldehyde resin, which was used to impregnate the composite, is considered.


2022 ◽  
Vol 5 (1) ◽  
pp. 23
Author(s):  
Minghan Qu ◽  
Tong He ◽  
Tianyi Liu ◽  
Chensha Li

The in-situ reaction process was used to prepare composite materials loaded with cadmium sulfide, which were respectively loaded by carbon nanotubes, activated carbon, and carbon nanotube/activated carbon composites for the study of photocatalytic degradation of methyl orange. The results show that when carbon nanotubes and activated carbon are used as carriers, the photocatalytic degradation reaction rate constants are 3.6 times and 8.8 times higher than those without a carrier. The photocatalytic performance of the carbon nanotube/activated carbon composite carrier with a mass ratio of 20: 80 to support cadmium sulfide is significantly higher than that of cadmium sulfide supported by carbon nanotubes and activated carbon respectively, and its photocatalytic degradation reaction rate constant is 30% – 40% higher than that under the condition of activated carbon alone as carrier. It shows that when the modified activated carbon is used as a photocatalyst carrier, carbon nanotubes have a significant effect in improving the efficiency of degrading organic matter.


2022 ◽  
Author(s):  
Yomna ElSaboni ◽  
John A. Hunt ◽  
Christine Moffatt ◽  
Yang Wei

Abstract This article focuses on the design and fabrication of flexible textile-based protein sensors to be embedded in wound dressings. Chronic wounds require continuous monitoring to prevent further complications and to determine the best course of treatment in the case of infection. As proteins are essential for the progression of wound healing, they can be used as an indicator of wound status. Through measuring protein concentrations, the sensor can assess and monitor the wound condition continuously as a function of time. The protein sensor consists of electrodes that are directly screen printed using both silver and carbon composite inks on polyester nonwoven fabric which was deliberately selected as this is one of the common backing fabrics currently used in wound dressings. Three sensor designs were investigated to determine if any were suitable for protein detection. These sensors were experimentally evaluated and compared to each other by using albumin protein in phosphate buffered saline (PBS). A comprehensive set of cyclic voltammetry measurements were used to determine the optimal sensor design to provide the measurement of protein in solution. The best sensor was comprised of only silver conductive ink present to form the tracks outside the interface zone and a carbon only layer in the working and counter electrodes at the interface zone. This design prevents the formation of silver dioxide and protects the sensor from rapid decay, which allows for the recording of consecutive measurements using the same sensor. The chosen printed protein sensor was able to detect BSA at varying concentrations ranging from 30-0.3 mg/ml with a sensitivity of 0.0026µA/M.


Author(s):  
L. A. Zemskova ◽  
◽  
D. H. Shlyk ◽  
N. N. Barinov ◽  
◽  
...  

The paper analyzes data on the removal of arsenic by sorption methods using materials that have prospects for large-scale application in water treatment. These materials include transition metal oxides in the micro- and nano-dimensional form, including those in the composition of composite materials with inorganic matrices, or hybrid sorbents in the composition with polymer resins or natural biopolymers. Examples of the use of composite (hybrid) sorbents for the removal of arsenic from solutions with low concentrations (at the level of MPC) are given. The objective of this article was to sum the up-to-date information about the most important features of chitosan-containing and chitosan-carbon materials we developed in view their use in arsenic removal processes at low concentrations to concentrations that meet WHO requirements. The paper presents data on the sorption properties of Mo-containing activated carbon fibers and chitosan-carbon composite materials towards arsenic (V) when it is extracted from bidistilled and tap water under static and dynamic conditions. The factors of the different behavior of the sorbents depending on the form of a biopolymer deposited on the fiber and the stability of the sorbents during the sorption of arsenic are discussed.


Sign in / Sign up

Export Citation Format

Share Document