Coordination and Electronic Structure of Ruthenium(II)-tris-2,2′-bipyridine in the Triplet Metal-to-Ligand Charge-Transfer Excited State Observed by Picosecond Time-Resolved Ru K-Edge XAFS

2012 ◽  
Vol 116 (27) ◽  
pp. 14232-14236 ◽  
Author(s):  
Tokushi Sato ◽  
Shunsuke Nozawa ◽  
Ayana Tomita ◽  
Manabu Hoshino ◽  
Shin-ya Koshihara ◽  
...  
2020 ◽  
Author(s):  
David Cagan ◽  
Gautam Stroscio ◽  
Alexander Cusumano ◽  
Ryan Hadt

<p>Multireference electronic structure calculations consistent with known experimental data have elucidated a novel mechanism for photo-triggered Ni(II)–C homolytic bond dissociation in Ni 2,2’-bipyridine (bpy) photoredox catalysts. Previously, a thermally assisted dissociation from the lowest energy triplet ligand field excited state was proposed and supported by density functional theory (DFT) calculations that reveal a barrier of ~30 kcal mol<sup>-1</sup>. In contrast, multireference ab initio calculations suggest this process is disfavored, with barrier heights of ~70 kcal mol<sup>-1</sup>, and highlight important ligand noninnocent contributions to excited state relaxation and bond dissociation processes that are not captured with DFT. In the multireference description, photo-triggered Ni(II)–C homolytic bond dissociation occurs via initial population of a singlet Ni(II)-to-bpy metal-to-ligand charge transfer (<sup>1</sup>MLCT) excited state followed by intersystem crossing and aryl-to-Ni(III) charge transfer, overall a formal two-electron transfer process driven by a single photon. This results in repulsive triplet excited states from which spontaneous homolytic bond dissociation can occur, effectively competing with relaxation to the lowest energy, nondissociative triplet Ni(II) ligand field excited state. These findings guide important electronic structure considerations for the experimental and computational elucidation of the mechanisms of ground and excited state cross-coupling catalysis mediated by Ni heteroaromatic complexes.</p>


2002 ◽  
Vol 41 (23) ◽  
pp. 6071-6079 ◽  
Author(s):  
Dana M. Dattelbaum ◽  
Kristin M. Omberg ◽  
Jon R. Schoonover ◽  
Richard L. Martin ◽  
Thomas J. Meyer

2020 ◽  
Author(s):  
David Cagan ◽  
Gautam Stroscio ◽  
Alexander Cusumano ◽  
Ryan Hadt

<p>Multireference electronic structure calculations consistent with known experimental data have elucidated a novel mechanism for photo-triggered Ni(II)–C homolytic bond dissociation in Ni 2,2’-bipyridine (bpy) photoredox catalysts. Previously, a thermally assisted dissociation from the lowest energy triplet ligand field excited state was proposed and supported by density functional theory (DFT) calculations that reveal a barrier of ~30 kcal mol<sup>-1</sup>. In contrast, multireference ab initio calculations suggest this process is disfavored, with barrier heights of ~70 kcal mol<sup>-1</sup>, and highlight important ligand noninnocent contributions to excited state relaxation and bond dissociation processes that are not captured with DFT. In the multireference description, photo-triggered Ni(II)–C homolytic bond dissociation occurs via initial population of a singlet Ni(II)-to-bpy metal-to-ligand charge transfer (<sup>1</sup>MLCT) excited state followed by intersystem crossing and aryl-to-Ni(III) charge transfer, overall a formal two-electron transfer process driven by a single photon. This results in repulsive triplet excited states from which spontaneous homolytic bond dissociation can occur, effectively competing with relaxation to the lowest energy, nondissociative triplet Ni(II) ligand field excited state. These findings guide important electronic structure considerations for the experimental and computational elucidation of the mechanisms of ground and excited state cross-coupling catalysis mediated by Ni heteroaromatic complexes.</p>


2021 ◽  
Author(s):  
Federico Coppola ◽  
Paola Cimino ◽  
Umberto Raucci ◽  
Maria Gabriella Chiariello ◽  
Alessio Petrone ◽  
...  

We present electronic structure methods to unveil non-radiative pathways of photoinduced charge transfer (CT) reactions that play a main role in photophysics and light harvesting technologies. A prototypical π-stacked molecular...


2014 ◽  
Vol 70 (a1) ◽  
pp. C775-C775 ◽  
Author(s):  
Radoslaw Kaminski ◽  
Jason Benedict ◽  
Elzbieta Trzop ◽  
Katarzyna Jarzembska ◽  
Bertrand Fournier ◽  
...  

High-intensity X-ray sources, such as synchrotrons or X-ray free electron lasers, providing up to 100 ps time-resolution allow for studying very short-lived excited electronic states in molecular crystals. Some recent examples constitute investigations of Rh...Rh bond shortening,[1] or metal-to-ligand charge transfer processes in CuI complexes.[2] Nevertheless, in cases in which the lifetime of excited state species exceeds 10 μs it is now possible, due to the dramatic increase in the brightness of X-ray sources and the sensitivity of detectors, to use laboratory equipment to explore structural changes upon excitation. Consequently, in this contribution we present detailed technical description of the 'in-house' X-ray diffraction setup allowing for the laser-pump X-ray-probe experiments within the time-resolution at the order of 10 μs or larger. The experimental setup consists of a modified Bruker Mo-rotating-anode diffractometer, coupled with the high-frequency Nd:YAG laser (λ = 355 nm). The required synchronization of the laser pulses and the X-ray beam is realized via the optical chopper mounted across the beam-path. Chopper and laser capabilities enable high-repetition-rate experiments reaching up to 100 kHz. In addition, the laser shutter is being directly controlled though the original diffractometer software, allowing for collection of the data in a similar manner as done at the synchrotron (alternating light-ON & light-OFF frames). The laser beam itself is split into two allowing for improved uniform light delivery onto the crystal specimen. The designed setup was tested on the chosen set of crystals exhibiting rather long-lived excited state, such as, the Cu2Br2L2 (L = C5H4N-NMe2) complex, for which the determined lifetime is about 100 μs at 90 K. The results shall be presented. Research is funded by the National Science Foundation (CHE1213223). KNJ is supported by the Polish Ministry of Science and Higher Education through the "Mobility Plus" program.


2014 ◽  
Vol 92 (10) ◽  
pp. 996-1009 ◽  
Author(s):  
Shivnath Mazumder ◽  
Ryan A. Thomas ◽  
Richard L. Lord ◽  
H. Bernhard Schlegel ◽  
John F. Endicott

The complexes [Ru(NCCH3)4bpy]2+ and [Ru([14]aneS4)bpy]2+ ([14]aneS4 = 1,4,8,11-tetrathiacyclotetradecane, bpy = 2,2′-bipyridine) have similar absorption and emission spectra but the 77 K metal-to-ligand charge-transfer (MLCT) excited state emission lifetime of the latter is less than 0.3% that of the former. Density functional theory modeling of the lowest energy triplet excited states indicates that triplet metal centered (3MC) excited states are about 3500 cm−1 lower in energy than their 3MLCT excited states in both complexes. The differences in excited state lifetimes arise from a much larger coordination sphere distortion for [Ru(NCCH3)4bpy]2+ and the associated larger reorganizational barrier for intramolecular electron transfer. The smaller ruthenium ligand distortions of the [Ru([14]aneS4)bpy]2+ complex are apparently a consequence of stereochemical constraints imposed by the macrocyclic [14]aneS4 ligand, and the 3MC excited state calculated for the unconstrained [Ru(S(CH3)2)4bpy]2+ complex (S(CH3)2 = dimethyl sulfide) is distorted in a manner similar to that of [Ru(NCCH3)4bpy]2+. Despite the lower energy calculated for its 3MC than 3MLCT excited state, [Ru(NCCH3)4bpy]2+ emits strongly in 77 K glasses with an emission quantum yield of 0.47. The emission is biphasic with about a 1 μs lifetime for its dominant (86%) emission component. The 405 nm excitation used in these studies results in a significant amount of photodecomposition in the 77 K glasses. This is a temperature-dependent biphotonic process that most likely involves the bipyridine-radical anionic moiety of the 3MLCT excited state. A smaller than expected value found for the radiative rate constant is consistent with a lower energy 3MC than 3MLCT state.


Sign in / Sign up

Export Citation Format

Share Document