intramolecular electron transfer
Recently Published Documents


TOTAL DOCUMENTS

1171
(FIVE YEARS 62)

H-INDEX

65
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Linda Zedler ◽  
Pascal Wintergerst ◽  
Alexander Mengele ◽  
Carolin Müller ◽  
Chunyu Li ◽  
...  

Unequivocal assignment of rate limiting steps in supramolecular photocatalysts is of utmost importance to rationally optimize photocatalytic activity. By spectroscopic and catalytic analysis of a series of three structurally similar [(tbbpy) 2 Ru-BL-Rh(Cp*)Cl] 3+ photocatalysts just differing in the central part (alkynyl, triazole or phenazine) of the bridging ligand (BL) we were able to derive design strategies for improved photocatalytic activity of this class of compounds (tbbpy = 4,4´-tert-butyl- 2,2´-bipyridine, Cp* = pentamethylcyclopentadienyl). Most importantly, not the rate of the transfer of the first electron towards the Rh III center but rather the rate at which a two-fold reduced Rh I species is generated can directly be correlated with the observed photocatalytic formation of NADH from NAD + . Interestingly, the complex which exhibited the fastest intramolecular electron transfer kinetics for the first electron is not the one that allowed the fastest photocatalysis. With the photocatalytically most efficient alkynyl linked system, it was even possible to overcome the rate of thermal NADH formation. Moreover, for this photocatalyst loss of the alkynyl functionality under photocatalytic conditions was identified as an important deactivation pathway.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6976
Author(s):  
Petro Khoroshyy ◽  
Katalin Tenger ◽  
Rita V. Chertkova ◽  
Olga V. Bocharova ◽  
Mikhail P. Kirpichnikov ◽  
...  

Electron transfer within and between proteins is a fundamental biological phenomenon, in which efficiency depends on several physical parameters. We have engineered a number of horse heart cytochrome c single-point mutants with cysteine substitutions at various positions of the protein surface. To these cysteines, as well as to several native lysine side chains, the photoinduced redox label 8-thiouredopyrene-1,3,6-trisulfonate (TUPS) was covalently attached. The long-lived, low potential triplet excited state of TUPS, generated with high quantum efficiency, serves as an electron donor to the oxidized heme c. The rates of the forward (from the label to the heme) and the reverse (from the reduced heme back to the oxidized label) electron transfer reactions were obtained from multichannel and single wavelength flash photolysis absorption kinetic experiments. The electronic coupling term and the reorganization energy for electron transfer in this system were estimated from temperature-dependent experiments and compared with calculated parameters using the crystal and the solution NMR structure of the protein. These results together with the observation of multiexponential kinetics strongly support earlier conclusions that the flexible arm connecting TUPS to the protein allows several shortcut routes for the electron involving through space jumps between the label and the protein surface.


Author(s):  
Lena Schleicher ◽  
Andrej Trautmann ◽  
Dennis Stegmann ◽  
Günter Fritz ◽  
Jochem Gätgens ◽  
...  

Ruminants such as cattle and sheep depend on the breakdown of carbohydrates from plant-based feedstuff which is accomplished by the microbial community in the rumen. Roughly 40% of the rumen microbiota belong to the family of Prevotellaceae which ferment sugars to organic acids such as acetate, propionate as well as succinate. These substrates are important nutrients for the ruminant. In a metaproteome analysis of the rumen of cattle, proteins that are homologous to the Na + -translocating NADH:quinone oxidoreductase (NQR) and the quinone:fumarate reductase (QFR) were identified in different Prevotella species. Here we show that fumarate reduction to succinate in anaerobically growing Prevotella bryantii is coupled to chemiosmotic energy conservation by a supercomplex composed of NQR and QFR. This S odium-translocating N ADH: F umarate oxido R eductase (SNFR) supercomplex was enriched by BN-PAGE and characterized by in-gel enzyme activity staining and mass spectrometry. High NADH oxidation (850 nmol min -1 mg -1 ), quinone reduction (490 nmol min -1 mg -1 ) and fumarate reduction (1200 nmol min -1 mg -1 ) activities, together with high expression levels, demonstrate that SNFR represents a charge-separating unit in P. bryantii . Absorption spectroscopy of SNFR exposed to different substrates revealed intramolecular electron transfer from the FAD cofactor in NQR to heme b cofactors in QFR. SNFR catalyzed the stoichiometric conversion of NADH and fumarate to NAD + and succinate. We propose that the regeneration of NAD + in P. bryantii is intimately linked to the build-up of an electrochemical gradient which powers ATP synthesis by electron transport phosphorylation. Importance Feeding strategies for ruminants are designed to optimize nutrient efficiency for animals and to prevent energy losses like enhanced methane production. Key to this are the fermentative reactions of the rumen microbiota, dominated by Prevotella sp. We show that succinate formation by P. bryantii is coupled to NADH oxidation and sodium-gradient formation by a newly described supercomplex consisting of Na + -translocating NADH:quinone oxidoreductase (NQR) and fumarate reductase (QFR), representing the S odium-translocating N ADH: F umarate oxido R eductase (SNFR) supercomplex. SNFR is the major charge-separating module, generating an electrochemical sodium gradient in P. bryantii . Our findings offer clues to the observation that use of fumarate as feed additive does not significantly increase succinate production, or decrease methanogenesis, by the microbial community in the rumen.


Author(s):  
Yajing Yang ◽  
Silvano R. Valandro ◽  
Zhiliang Li ◽  
Soojin Kim ◽  
Kirk S. Schanze

2021 ◽  
Vol 2 (1) ◽  
pp. 139-148
Author(s):  
Ivan V. Zhukov ◽  
Alexey S. Kiryutin ◽  
Mikhail S. Panov ◽  
Natalya N. Fishman ◽  
Olga B. Morozova ◽  
...  

Abstract. Flavin adenine dinucleotide (FAD) is an important cofactor in many light-sensitive enzymes. The role of the adenine moiety of FAD in light-induced electron transfer was obscured, because it involves an adenine radical, which is short-lived with a weak chromophore. However, an intramolecular electron transfer from adenine to flavin was revealed several years ago by Robert Kaptein by using chemically induced dynamic nuclear polarization (CIDNP). The question of whether one or two types of biradicals of FAD in aqueous solution are formed stays unresolved so far. In the present work, we revisited the CIDNP study of FAD using a robust mechanical sample shuttling setup covering a wide magnetic field range with sample illumination by a light-emitting diode. Also, a cost efficient fast field cycling apparatus with high spectral resolution detection up to 16.4 T for nuclear magnetic relaxation dispersion studies was built based on a 700 MHz NMR spectrometer. Site-specific proton relaxation dispersion data for FAD show a strong restriction of the relative motion of its isoalloxazine and adenine rings with coincident correlation times for adenine, flavin, and their ribityl phosphate linker. This finding is consistent with the assumption that the molecular structure of FAD is rigid and compact. The structure with close proximity of the isoalloxazine and purine moieties is favorable for reversible light-induced intramolecular electron transfer from adenine to triplet excited flavin with formation of a transient spin-correlated triplet biradical F⚫−-A⚫+. Spin-selective recombination of the biradical leads to the formation of CIDNP with a common emissive maximum at 4.0 mT detected for adenine and flavin protons. Careful correction of the CIDNP data for relaxation losses during sample shuttling shows that only a single maximum of CIDNP is formed in the magnetic field range from 0.1 mT to 9 T; thus, only one type of FAD biradical is detectable. Modeling of the CIDNP field dependence provides good agreement with the experimental data for a normal distance distribution between the two radical centers around 0.89 nm and an effective electron exchange interaction of −2.0 mT.


2021 ◽  
Author(s):  
Rangsiman Ketkaew

Photoinduced intramolecular electron transfer (PIET) plays a vital role in the efficiency of electronics communication in transition metal complexes catalysing oxidation-reduction reaction. In this work, we theoretically calculate the rate of electron transfer(ET) in Ru(II)-BL-Ru(I) hybrid complexes; where BL is bridging ligand. A brief concept of ET in the basis of Marcus theory, which is extended to address a variety of different type of ET, is provided. We show that, in the case of Ru(II)-BL-Ru(I) complex, ET involves a non-adiabatic state which thanks to a fast electronics communication between donor and acceptor connected by BL and becomes rigid complex. Single electron transferring in Ru(II)-BL-Ru(I) complex governed by PIET constructed by potential energy curve as change of structural transformation over time-evolution. We also investigate the mechanism of PIET involving a redox reaction in excited state, wherein the oxidation state of Ru(II) (donor) and Ru(I) (acceptor) changes. To access non-adiabatic state of Ru(II)-BL-Ru(I), we use constrained density functional theory to allow ground state calculation to be performed along with geometry constraints. We also systematically study the role of distance of donor-acceptor separation on kinetics of PIET


2021 ◽  
Vol 138 ◽  
pp. 107699
Author(s):  
Victor Andoralov ◽  
Sergey Shleev ◽  
Natalia Dergousova ◽  
Olga Kulikova ◽  
Vladimir Popov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document