scholarly journals Hydrothermal Growth of ZnO Nanorods Aligned Parallel to the Substrate Surface

2008 ◽  
Vol 112 (25) ◽  
pp. 9234-9239 ◽  
Author(s):  
Ye Sun ◽  
Neil A. Fox ◽  
D. Jason Riley ◽  
Michael N. R. Ashfold
2011 ◽  
Vol 10 (04n05) ◽  
pp. 845-849
Author(s):  
GAURAV SHUKLA ◽  
ALIKA KHARE

Hydrothermal growth of highly c-axis oriented ZnO nanorods with high aspect ratio on pulsed laser deposited ZnO seed layer is reported. Effect of pre-heating time, growth time and seed layer on the structural, morphological and optical properties of ZnO nanorods is presented. The possible growth mechanism for ZnO nanorods is also discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Z. Khusaimi ◽  
M. H. Mamat ◽  
N. Abdullah ◽  
M. Rusop

ZnO nanoparticles were prepared on Si substrates by a mist-atomisation technique. Precursor of aqueous solution zinc nitrate and HMTA were released on substrates heated at 200, 300, and400°Cconfined in chamber box. The surface of Si substrate was varied, that is, gold-seeded Si (Si/Au), ZnO nanorods on Si/Au (Si/Au/ZnO), and just Si. The samples were subsequently analysed by X-ray diffraction, scanning electron microscopy, and photoluminescence (PL) spectroscopy to study their structural, surface morphology, and PL emission properties. Analysis from the XRD patterns of the films showed stronga-andc-axis lattice and of pure ZnO hexagonal wurtzite type. The crystallite size varied from 6 to 43 nm and was found to generally increase with increasing substrates' temperatures (Ts). SEM micrographs revealed granular-like structure throughout. Shifts pattern of PL emission at ultraviolet and visible range was found to support size changes observed. Both substrate surface type and deposition temperature were found to significantly affect crystalline growth of ZnO nanoparticles. Chemical equations and justification for growth patterns are also suggested.


2020 ◽  
Vol 27 (08) ◽  
pp. 1950198
Author(s):  
ABDULQADER D. FAISAL ◽  
MOHAMMAD O. DAWOOD ◽  
HASSAN H. HUSSEIN ◽  
KHALEEL I. HASSOON

In this work, ZnO nanorods (ZnO NRs) were successfully synthesized on FTO-glass via hydrothermal technique. Two steps were followed to grow ZnO NRs. In the first step, the seed layer of ZnO nanocrystals was deposited by using a drop cast method. The second step was represented by the hydrothermal growth of ZnO NRs on a pre-coated FTO- glass with the seed layer. The hydrothermal growth was conducted at 90∘C for 2[Formula: see text]h. The resulted structure, morphology and optical properties of the produced layers were analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray (EDX) and UV-visible spectrophotometer, respectively. The analysis confirmed that the ZnO NRs grown by the hydrothermal method have a hexagonal crystal structure which was grown randomly on the FTO surface. The crystallite size was recorded 50[Formula: see text]nm and a slight microstrain (0.142%) was calculated. The bandgap was found to be in the range of 3.14–3.17[Formula: see text]eV. The ZnO NRs have a high density and large aspect ratio. A pH sensor with high sensitivity was fabricated using a two-electrode cell configuration. The ZnO NRs sensor showed the sensitivity of [Formula: see text]59.03[Formula: see text]mV/pH, which is quite promising and close to the theoretical value ([Formula: see text]59.12[Formula: see text]mV/pH).


2018 ◽  
Vol 88 (1) ◽  
pp. 437-447 ◽  
Author(s):  
S K Naveen Kumar ◽  
A Akshaya Kumar ◽  
Almaw Ayele Aniley ◽  
Shekhar Bhansali ◽  
Renny E Fernandez

RSC Advances ◽  
2014 ◽  
Vol 4 (84) ◽  
pp. 44452-44456 ◽  
Author(s):  
Y. Yin ◽  
Y. Sun ◽  
M. Yu ◽  
X. Liu ◽  
B. Yang ◽  
...  

Annealing or plasma pre-treating the ZnO seed layer influences the nucleation and hydrothermal growth of ZnO nanorods and their photoluminescence.


2015 ◽  
Vol 3 (8) ◽  
pp. 4568-4577 ◽  
Author(s):  
A. Resmini ◽  
I. G. Tredici ◽  
C. Cantalini ◽  
L. Giancaterini ◽  
F. De Angelis ◽  
...  

Soft-lithography of Zn-loaded hydrogels and a subsequent hydrothermal growth process yield self-assembling networks of bridging ZnO nanorods (NRs). They are grown on seeding micropillars of ZnO until they touch, forming junctions that provide a preferred electrical path for the operative current of functional devices (e.g. gas senors).


2015 ◽  
Vol 1109 ◽  
pp. 104-107
Author(s):  
K.L. Foo ◽  
U. Hashim ◽  
Chun Hong Voon ◽  
M. Kashif

ZnO nanorods, type of the metal-oxide semiconductor deposited on interdigitated electrode (IDE) substrate using hydrothermal growth technique. The growth ZnO nanorods was annealed in furnace at 500°C for 2 hours as to obtain highly crystallite of ZnO nanorods. XRD pattern indicated the synthesized ZnO nanorods have preferred orientation along the (002) plane. Moreover, FESEM images showed that the nanorods with the size less than 60 nanometer were successfully synthesized using hydrothermal growth technique. The investigation on optical properties using UV-Vis-NIR spectrophotometer confirmed ZnO is classified as a wide band gap semiconductor material. Furthermore, the growth ZnO nanorods which undergo electrical properties testing using dielectric analyzer and source meter show that the ZnO nanorods demonstrated rectifying behaviour.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 977
Author(s):  
Ilaria Cesini ◽  
Magdalena Kowalczyk ◽  
Alessandro Lucantonio ◽  
Giacomo D’Alesio ◽  
Pramod Kumar ◽  
...  

Hydrothermal growth of ZnO nanorods has been widely used for the development of tactile sensors, with the aid of ZnO seed layers, favoring the growth of dense and vertically aligned nanorods. However, seed layers represent an additional fabrication step in the sensor design. In this study, a seedless hydrothermal growth of ZnO nanorods was carried out on Au-coated Si and polyimide substrates. The effects of both the Au morphology and the growth temperature on the characteristics of the nanorods were investigated, finding that smaller Au grains produced tilted rods, while larger grains provided vertical rods. Highly dense and high-aspect-ratio nanorods with hexagonal prismatic shape were obtained at 75 °C and 85 °C, while pyramid-like rods were grown when the temperature was set to 95 °C. Finite-element simulations demonstrated that prismatic rods produce higher voltage responses than the pyramid-shaped ones. A tactile sensor, with an active area of 1 cm2, was fabricated on flexible polyimide substrate and embedding the nanorods forest in a polydimethylsiloxane matrix as a separation layer between the bottom and the top Au electrodes. The prototype showed clear responses upon applied loads of 2–4 N and vibrations over frequencies in the range of 20–800 Hz.


Sign in / Sign up

Export Citation Format

Share Document