Pressure- and temperature-dependent photon correlation study of bulk poly(ethyl acrylate) above the glass transition temperature

1982 ◽  
Vol 15 (3) ◽  
pp. 870-874 ◽  
Author(s):  
Georg Fytas ◽  
Adam Patkowski ◽  
Gerd Meier ◽  
Thomas Dorfmueller
2019 ◽  
Vol 676 ◽  
pp. 7-12 ◽  
Author(s):  
Allen Mathew ◽  
Fabrice Goutier ◽  
Benoit Escorne ◽  
Abdelaziz Elass ◽  
Gérard Louis ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4336
Author(s):  
Jolanta Tomaszewska ◽  
Tomasz Sterzyński ◽  
Aneta Woźniak-Braszak ◽  
Michał Banaszak

This review addresses the impact of different nanoadditives on the glass transition temperature (Tg) of polyvinyl chloride (PVC), which is a widely used industrial polymer. The relatively high Tg limits its temperature-dependent applications. The objective of the review is to present the state-of-the-art knowledge on the influence of nanofillers of various origins and dimensions on the Tg of the PVC. The Tg variations induced by added nanofillers can be probed mostly by such experimental techniques as thermomechanical analysis (TMA), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and dielectric thermal analysis (DETA). The increase in Tg is commonly associated with the use of mineral and carbonaceous nanofillers. In this case, a rise in the concentration of nanoadditives leads to an increase in the Tg due to a restraint of the PVC macromolecular chain’s mobility. The lowering of Tg may be attributed to the well-known plasticizing effect, which is a consequence of the incorporation of oligomeric silsesquioxanes to the polymeric matrix. It has been well established that the variation in the Tg value depends also on the chemical modification of nanofillers and their incorporation into the PVC matrix. This review may be an inspiration for further investigation of nanofillers’ effect on the PVC glass transition temperature.


1990 ◽  
Vol 68 (7) ◽  
pp. 1228-1232 ◽  
Author(s):  
Denis Duchesne ◽  
Adi Eisenberg

The thermal and dynamic mechanical properties of random butyl acrylate- and plasticized ethyl acrylate-based vinylpyridinium ionomers have been investigated. The properties of the ionomers were found to be dependent on the glass transition temperature of the matrix material. Ionomers having a glass transition temperature lower than ca. 25 °C exhibited all the features associated with the presence of phase-separated microdomains or clusters while the materials with higher glass transition temperatures were not. It was also observed that the dispersion associated with the vinylpyridinium clusters for a butyl acrylate-based ionomer with 12 mol% of ionic units occurs at ca. 25 °C. This value is very close to that observed previously by Otocka and Eirich in their study of a butadiene-based vinylpyridinium ionomer with the same ion content. Keywords: ionomers, plasticization, clustering, glass transition, dynamic mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document