irreversible thermodynamic
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 27)

H-INDEX

18
(FIVE YEARS 2)

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 76
Author(s):  
Karo Michaelian ◽  
Ramón Eduardo Cano Mateo

Through a modern derivation of Planck’s formula for the entropy of an arbitrary beam of photons, we derive a general expression for entropy production due to the irreversible process of the absorption of an arbitrary incident photon spectrum in material and its dissipation into an infrared-shifted grey-body emitted spectrum, with the rest being reflected or transmitted. Employing the framework of Classical Irreversible Thermodynamic theory, we define the generalized thermodynamic flow as the flow of photons from the incident beam into the material and the generalized thermodynamic force is, then, the entropy production divided by the photon flow, which is the entropy production per unit photon at a given wavelength. We compare the entropy production of different inorganic and organic materials (water, desert, leaves and forests) under sunlight and show that organic materials are the greater entropy-producing materials. Intriguingly, plant and phytoplankton pigments (including chlorophyll) reach peak absorption exactly where entropy production through photon dissipation is maximal for our solar spectrum 430<λ<550 nm, while photosynthetic efficiency is maximal between 600 and 700 nm. These results suggest that the evolution of pigments, plants and ecosystems has been towards optimizing entropy production, rather than photosynthesis. We propose using the wavelength dependence of global entropy production as a biosignature for discovering life on planets of other stars.


Author(s):  
Karo Michaelian ◽  
Ramon Eduardo Cano Mateo

Through a modern derivation of Planck's formula for the entropy of an arbitrary beam of photons we derive a general expression for the entropy production due to the irreversible process of the absorption of an arbitrary incident photon spectrum in material and its dissipation into an infrared-shifted grey-body emitted spectrum, the rest being reflected or transmitted. Employing the framework of Classical Irreversible Thermodynamic theory, we define the generalized thermodynamic flow as the flow of photons from the incident beam into the material and the generalized thermodynamic force is then just the entropy production divided by the photon flow which is the entropy production per unit photon at a given wavelength. We compare the entropy production under sunlight of different inorganic and organic materials (water, desert, leaves and forests) and show that organic materials are the greater entropy producing materials. Intriguingly, plant and phytoplankton pigments (including chlorophyll) have peak absorption exactly where entropy production through photon dissipation is maximal for our solar spectrum $430&lt;\lambda&lt;550$ nm, while photosynthetic efficiency is maximal between 600 and 700 nm. These results suggest that the evolution of pigments, plants and ecosystems has been towards optimizing entropy production rather than photosynthesis. We propose using the wavelength dependence of global entropy production as a biosignature for discovering life on planets of other stars.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1705
Author(s):  
Harrison Crecraft

The thermocontextual interpretation (TCI) is an alternative to the existing interpretations of physical states and time. The prevailing interpretations are based on assumptions rooted in classical mechanics, the logical implications of which include determinism, time symmetry, and a paradox: determinism implies that effects follow causes and an arrow of causality, and this conflicts with time symmetry. The prevailing interpretations also fail to explain the empirical irreversibility of wavefunction collapse without invoking untestable and untenable metaphysical implications. They fail to reconcile nonlocality and relativistic causality without invoking superdeterminism or unexplained superluminal correlations. The TCI defines a system’s state with respect to its actual surroundings at a positive ambient temperature. It recognizes the existing physical interpretations as special cases which either define a state with respect to an absolute zero reference (classical and relativistic states) or with respect to an equilibrium reference (quantum states). Between these special case extremes is where thermodynamic irreversibility and randomness exist. The TCI distinguishes between a system’s internal time and the reference time of relativity and causality as measured by an external observer’s clock. It defines system time as a complex property of state spanning both reversible mechanical time and irreversible thermodynamic time. Additionally, it provides a physical explanation for nonlocality that is consistent with relativistic causality without hidden variables, superdeterminism, or “spooky action”.


Author(s):  
Harrison Crecraft

The Thermocontextual Interpretation (TCI) is proposed here as an alternative to existing interpretations of physical states and time. Prevailing interpretations are based on assumptions rooted in classical mechanics. Logical implications include the determinism and reversibility of change, and an immediate conflict. Determinism underlies causality, but causality implies a distinction between cause and effect and an arrow of time, conflicting with reversibility. Prevailing interpretations also fail to explain the empirical irreversibility of wavefunction collapse without untestable and untenable metaphysical implications. They fail to reconcile nonlocality and relativity without invoking superdeterminism or unexplained superluminal correlations. The Thermocontextual Interpretation defines a system&rsquo;s state with respect to its actual surroundings at a positive ambient temperature. The TCI bridges existing physical interpretations and thermodynamics as special cases, which define states either with respect to an absolute-zero reference or with respect to a thermally equilibrated reference. The TCI defines system time as a complex property of state spanning both reversible mechanical time and irreversible thermodynamic time, and it distinguishes between system time and the reference time of relativity and causality, as measured by an observer&rsquo;s clock. And, the TCI provides a physical explanation for nonlocality, consistent with relativity, without hidden variables, superdeterminism, or &ldquo;spooky action.&rdquo;


Author(s):  
Harrison Crecraft

The Thermocontextual Interpretation (TCI) is proposed here as an alternative to existing interpretations of physical states and time. Prevailing interpretations are based on assumptions rooted in classical mechanics. Logical implications include the determinism and reversibility of change, and an immediate conflict. Determinism underlies causality, but causality implies a distinction between cause and effect and an arrow of time, conflicting with reversibility. Prevailing interpretations also fail to explain the empirical irreversibility of wavefunction collapse without untestable and untenable metaphysical implications. They fail to reconcile nonlocality and relativity without invoking superdeterminism or unexplained superluminal correlations. The Thermocontextual Interpretation defines a system’s state with respect to its actual surroundings at a positive ambient temperature. The TCI bridges existing physical interpretations and thermodynamics as special cases, which define states either with respect to an absolute-zero reference or with respect to a thermally equilibrated reference. The TCI defines system time as a complex property of state spanning both reversible mechanical time and irreversible thermodynamic time, and it distinguishes between system time and the reference time of relativity and causality, as measured by an observer’s clock. And, the TCI provides a physical explanation for nonlocality, consistent with relativity, without hidden variables, superdeterminism, or “spooky action.”


2021 ◽  
Vol 3 (4) ◽  
pp. 724-730
Author(s):  
A. Yu. Zakharov ◽  
M. A. Zakharov

The dynamics of free and forced vibrations of a chain of particles are investigated in a harmonic model taking into account the retardation of interactions between atoms. It is found that the retardation of interactions between particles leads to the non-existence of stationary free vibrations of the crystal lattice. It is shown that in the case of a stable lattice, forced vibrations, regardless of the initial conditions, pass into a stationary regime. A non-statistical dynamic mechanism of the irreversible thermodynamic equilibration is proposed.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1910
Author(s):  
Simona Fialová ◽  
František Pochylý

This article is focused on the derivation of constitutive equations for magnetic liquids. The results can be used for both ferromagnetic and magnetorheological fluids after the introduced simplifications. The formulation of constitutive equations is based on two approaches. The intuitive approach is based on experimental experience of non-Newtonian fluids, which exhibit a generally non-linear dependence of mechanical stress on shear rate; this is consistent with experimental experience with magnetic liquids. In these general equations, it is necessary to determine the viscosity of a liquid as a function of magnetic induction; however, these equations only apply to the symmetric stress tensor and can only be used for an incompressible fluid. As a result of this limitation, in the next part of the work, this approach is extended by the asymmetry of the stress tensor, depending on the angular velocity tensor. All constitutive equations are formulated in Cartesian coordinates in 3D space. The second approach to determining constitutive equations is more general: it takes the basis of non-equilibrium thermodynamics and is based on the physical approach, using the definition of density of the entropy production. The production of entropy is expressed by irreversible thermodynamic flows, which are caused by the effect of generalized thermodynamic forces after disturbance of the thermodynamic equilibrium. The dependence between fluxes and forces determines the constitutive equations between stress tensors, depending on the strain rate tensor and the magnetization vector, which depends on the intensity of the magnetic field. Their interdependencies are described in this article on the basis of the Curie principle and on the Onsager conditions of symmetry.


ACS Nano ◽  
2021 ◽  
Author(s):  
YongJun Cho ◽  
Sichi Li ◽  
Jonathan L. Snider ◽  
Maxwell A. T. Marple ◽  
Nicholas A. Strange ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 513
Author(s):  
Zhexu Li ◽  
Haibo Cao ◽  
Hanxin Yang ◽  
Juncheng Guo

Thermally driven heat pump systems play important roles in the utilization of low-grade thermal energy. In order to evaluate and compare the performances of three different constructions of thermally driven heat pump and heat transformer, the low-dissipation assumption has been adopted to establish the irreversible thermodynamic models of them in the present paper. By means of the proposed models, the heating loads, the coefficients of performance (COPs) and the optimal relations between them for various constructions are derived and discussed. The performances of different constructions are numerically assessed. More importantly, according to the results obtained, the upper and lower bounds of the COP at maximum heating load for different constructions are generated and compared by the introduction of a parameter measuring the deviation from the reversible limit of the system. Accordingly, the optimal constructions for the low-dissipation three-terminal heat pump and heat transformer are determined within the frame of low-dissipation assumption, respectively. The optimal constructions in accord with previous research and engineering practices for various three-terminal devices are obtained, which confirms the compatibility between the low-dissipation model and endoreversible model and highlights the validity of the application of low-dissipation model for multi-terminal thermodynamic devices. The proposed models and the significant results obtained enrich the theoretical thermodynamic model of thermally driven heat pump systems and may provide some useful guidelines for the design and operation of realistic thermally driven heat pump systems.


Sign in / Sign up

Export Citation Format

Share Document