scholarly journals A basin-coherent mode of sub-monthly variability in Arctic Ocean bottom pressure

2011 ◽  
Vol 38 (14) ◽  
pp. n/a-n/a ◽  
Author(s):  
Cecilia Peralta-Ferriz ◽  
James H. Morison ◽  
John M. Wallace ◽  
Jinlun Zhang
2014 ◽  
Vol 48 (5) ◽  
pp. 52-68 ◽  
Author(s):  
Cecilia Peralta-Ferriz ◽  
James H. Morison ◽  
Scott E. Stalin ◽  
Christian Meinig

AbstractHigh-precision deep Arctic Bottom Pressure Recorders (ABPRs) were developed to measure ocean bottom pressure variations in the perennial ice-covered Arctic Ocean. The ABPRs use the tsunami detection DART acoustic modem technology and have been programmed to store and transmit the data acoustically without the need to recover the instrument. ABPRs have been deployed near the North Pole, where the ice cover is a year-round challenge for access with a ship. Instead, the ABPRs have been built as light-weight mechanical systems that we can install using aircraft landing on the ice. ABPRs have provided the first records of uninterrupted pressure data over continuous years ever made in the central Arctic. The ABPR data have allowed us to identify and understand modes of Arctic Ocean bottom pressure variability that were unknown before the ABPR records and have offered new means of investigating and understanding the rapidly changing Arctic system. The ABPR records have also shown outstanding agreement with the satellite-sensed ocean bottom pressure anomalies from GRACE, providing ground truth data for validation of the satellite system. Due to the successful science findings as well as the ABPRs' capability to fulfill the upcoming potential gaps of pressure measurements between GRACE and a GRACE follow-on mission, we highlight the urgent need to develop and maintain an Arctic observing network using ABPRs.


2016 ◽  
Vol 43 (17) ◽  
pp. 9183-9191 ◽  
Author(s):  
Cecilia Peralta-Ferriz ◽  
James H. Morison ◽  
John M. Wallace

2020 ◽  
Author(s):  
Cecilia Peralta-Ferriz ◽  
James Morison ◽  
Jennifer Bonin

<p>Ocean bottom pressure (OBP) from the Gravity Recovery and Climate Experiment (GRACE) revealed Arctic Ocean circulation patterns and variability that were previously unknown (Morison et al., 2007; Morison et al., 2012; Peralta-Ferriz et al., 2014). OBP measurements from the GRACE Follow-On mission (GRACE-FO) are therefore increasingly important for monitoring Arctic Ocean variability, and critical for understanding and predicting the fate of the rapidly changing Arctic environment.</p> <p>In this work we use GRACE data from 2002 to 2017 jointly with a 10-year record of <em>in situ</em> OBP at the North Pole (2005-2015) complemented with <em>in situ</em> OBP in the Canada Basin (2015-2018), and wind reanalysis products, to create a proxy representation of the OBP anomalies that explains the largest possible fraction of the observed OBP variability in the Arctic Ocean and the Nordic Seas. We do this by performing a linear regression analysis, combined with maximum covariance analysis (MCA) – a technique that was tested prior to the decommission of GRACE and the launch of GRACE-FO (Peralta-Ferriz et al., 2016). Here, the first predictor time series is the <em>in situ</em> OBP record at the North Pole and Canada Basin; the second predictor time series is the expansion coefficients time series of the leading mode of MCA between the GRACE OBP coupled with the winds. We use this proxy OBP to merge GRACE with the first 2 years of available GRACE-FO OBP. We compare our merged OBP field with OBP output from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). Preliminary results suggest a good agreement between the proxy and predicted OBP fields and both GRACE and GRACE-FO data, especially in the central Arctic, but also in the Nordic Seas. The OBP variations from the merged GRACE and GRACE-FO and from PIOMAS will be also explored.</p> <p><strong>References:</strong></p> <ul> <li>Morison, J. H., J. Wahr, R. Kwok and C. Peralta-Ferriz (2007), Recent trends in Arctic Ocean mass distribution revealed by GRACE, Res. Lett.,34, L07602, doi:10.1029/2006GL029016.</li> <li>Morison, J., R. Kwok, C. Peralta-Ferriz, M. Alkire, I. Rigor, R. Andersen and M. Steele (2012), Changing Arctic Ocean freshwater pathways. Nature, 481, 66-7</li> <li>Peralta-Ferriz, C., J. H. Morison, J. M. Wallace, J. Bonin and J. Zhang (2014), Arctic Ocean circulation patterns revealed by GRACE, of Climate, 27:1445–1468 doi:10.1175/JCLI-D-13-00013.1.</li> <li>Peralta-Ferriz, C., J. H. Morison and J. M. Wallace(2016), Proxy representation of Arctic ocean bottom pressure variability: Bridging gaps in GRACE observations,  Res. Lett., 43, 9183–9191, doi:10.1002/2016GL070137</li> </ul>


2021 ◽  
Vol 13 (7) ◽  
pp. 1242
Author(s):  
Hakan S. Kutoglu ◽  
Kazimierz Becek

The Mediterranean Ridge accretionary complex (MAC) is a product of the convergence of Africa–Europe–Aegean plates. As a result, the region exhibits a continuous mass change (horizontal/vertical movements) that generates earthquakes. Over the last 50 years, approximately 430 earthquakes with M ≥ 5, including 36 M ≥ 6 earthquakes, have been recorded in the region. This study aims to link the ocean bottom deformations manifested through ocean bottom pressure variations with the earthquakes’ time series. To this end, we investigated the time series of the ocean bottom pressure (OBP) anomalies derived from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) satellite missions. The OBP time series comprises a decreasing trend in addition to 1.02, 1.52, 4.27, and 10.66-year periodic components, which can be explained by atmosphere, oceans, and hydrosphere (AOH) processes, the Earth’s pole movement, solar activity, and core–mantle coupling. It can be inferred from the results that the OBP anomalies time series/mass change is linked to a rising trend and periods in the earthquakes’ energy time series. Based on this preliminary work, ocean-bottom pressure variation appears to be a promising lead for further research.


Author(s):  
Hiroaki Tsushima ◽  
Ryota Hino ◽  
Hiromi Fujimoto ◽  
Yuichiro Tanioka ◽  
Fumihiko Imamura

2019 ◽  
Vol 46 (1) ◽  
pp. 303-310 ◽  
Author(s):  
Tomoya Muramoto ◽  
Yoshihiro Ito ◽  
Daisuke Inazu ◽  
Laura M. Wallace ◽  
Ryota Hino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document