Toward Assimilation of Observation-Derived Mixing Heights to Improve Atmospheric Tracer Transport Models

Author(s):  
Roberto Kretschmer ◽  
Frank-Thomas Koch ◽  
Dietrich G. Feist ◽  
Gionata Biavati ◽  
Ute Karstens ◽  
...  
2008 ◽  
Vol 8 (20) ◽  
pp. 6037-6050 ◽  
Author(s):  
M. G. Lawrence ◽  
M. Salzmann

Abstract. Global chemistry-transport models (CTMs) and chemistry-GCMs (CGCMs) generally simulate vertical tracer transport by deep convection separately from the advective transport by the mean winds, even though a component of the mean transport, for instance in the Hadley and Walker cells, occurs in deep convective updrafts. This split treatment of vertical transport has various implications for CTM simulations. In particular, it has led to a misinterpretation of several sensitivity simulations in previous studies in which the parameterized convective transport of one or more tracers is neglected. We describe this issue in terms of simulated fluxes and fractions of these fluxes representing various physical and non-physical processes. We then show that there is a significant overlap between the convective and large-scale mean advective vertical air mass fluxes in the CTM MATCH, and discuss the implications which this has for interpreting previous and future sensitivity simulations, as well as briefly noting other related implications such as numerical diffusion.


2017 ◽  
Vol 10 (3) ◽  
pp. 1157-1174 ◽  
Author(s):  
Yosuke Niwa ◽  
Hirofumi Tomita ◽  
Masaki Satoh ◽  
Ryoichi Imasu ◽  
Yousuke Sawa ◽  
...  

Abstract. A four-dimensional variational (4D-Var) method is a popular algorithm for inverting atmospheric greenhouse gas (GHG) measurements. In order to meet the computationally intense 4D-Var iterative calculation, offline forward and adjoint transport models are developed based on the Nonhydrostatic ICosahedral Atmospheric Model (NICAM). By introducing flexibility into the temporal resolution of the input meteorological data, the forward model developed in this study is not only computationally efficient, it is also found to nearly match the transport performance of the online model. In a transport simulation of atmospheric carbon dioxide (CO2), the data-thinning error (error resulting from reduction in the time resolution of the meteorological data used to drive the offline transport model) is minimized by employing high temporal resolution data of the vertical diffusion coefficient; with a low 6-hourly temporal resolution, significant concentration biases near the surface are introduced. The new adjoint model can be run in discrete or continuous adjoint mode for the advection process. The discrete adjoint is characterized by perfect adjoint relationship with the forward model that switches off the flux limiter, while the continuous adjoint is characterized by an imperfect but reasonable adjoint relationship with its corresponding forward model. In the latter case, both the forward and adjoint models use the flux limiter to ensure the monotonicity of tracer concentrations and sensitivities. Trajectory analysis for high CO2 concentration events are performed to test adjoint sensitivities. We also demonstrate the potential usefulness of our adjoint model for diagnosing tracer transport. Both the offline forward and adjoint models have computational efficiency about 10 times higher than the online model. A description of our new 4D-Var system that includes an optimization method, along with its application in an atmospheric CO2 inversion and the effects of using either the discrete or continuous adjoint method, is presented in an accompanying paper Niwa et al.(2016).


2010 ◽  
Vol 10 (20) ◽  
pp. 9981-9992 ◽  
Author(s):  
S. Houweling ◽  
I. Aben ◽  
F.-M. Breon ◽  
F. Chevallier ◽  
N. Deutscher ◽  
...  

Abstract. This study presents a synthetic model intercomparison to investigate the importance of transport model errors for estimating the sources and sinks of CO2 using satellite measurements. The experiments were designed for testing the potential performance of the proposed CO2 lidar A-SCOPE, but also apply to other space borne missions that monitor total column CO2. The participating transport models IFS, LMDZ, TM3, and TM5 were run in forward and inverse mode using common a priori CO2 fluxes and initial concentrations. Forward simulations of column averaged CO2 (xCO2) mixing ratios vary between the models by σ=0.5 ppm over the continents and σ=0.27 ppm over the oceans. Despite the fact that the models agree on average on the sub-ppm level, these modest differences nevertheless lead to significant discrepancies in the inverted fluxes of 0.1 PgC/yr per 106 km2 over land and 0.03 PgC/yr per 106 km2 over the ocean. These transport model induced flux uncertainties exceed the target requirement that was formulated for the A-SCOPE mission of 0.02 PgC/yr per 106 km2, and could also limit the overall performance of other CO2 missions such as GOSAT. A variable, but overall encouraging agreement is found in comparison with FTS measurements at Park Falls, Darwin, Spitsbergen, and Bremen, although systematic differences are found exceeding the 0.5 ppm level. Because of this, our estimate of the impact of transport model uncerainty is likely to be conservative. It is concluded that to make use of the remote sensing technique for quantifying the sources and sinks of CO2 not only requires highly accurate satellite instruments, but also puts stringent requirements on the performance of atmospheric transport models. Improving the accuracy of these models should receive high priority, which calls for a closer collaboration between experts in atmospheric dynamics and tracer transport.


2011 ◽  
Vol 4 (11) ◽  
pp. 2441-2451 ◽  
Author(s):  
B. D. Hall ◽  
G. S. Dutton ◽  
D. J. Mondeel ◽  
J. D. Nance ◽  
M. Rigby ◽  
...  

Abstract. Sulfur hexafluoride (SF6) is a potent greenhouse gas and useful atmospheric tracer. Measurements of SF6 on global and regional scales are necessary to estimate emissions and to verify or examine the performance of atmospheric transport models. Typical precision for common gas chromatographic methods with electron capture detection (GC-ECD) is 1–2%. We have modified a common GC-ECD method to achieve measurement precision of 0.5% or better. Global mean SF6 measurements were used to examine changes in the growth rate of SF6 and corresponding SF6 emissions. Global emissions and mixing ratios from 2000–2008 are consistent with recently published work. More recent observations show a 10% decline in SF6 emissions in 2008–2009, which seems to coincide with a decrease in world economic output. This decline was short-lived, as the global SF6 growth rate has recently increased to near its 2007–2008 maximum value of 0.30±0.03 pmol mol−1 (ppt) yr−1 (95% C.L.).


1992 ◽  
Vol 286 (1) ◽  
pp. 295-303 ◽  
Author(s):  
I W Plesner

Steady-state rate equations for unidirectional (isotope-exchange) rates can become so complex, even for rather simple (reversible) enzyme or membrane transport models, that they are useless for detailed data analysis. In this paper a procedure is described for simultaneous simulation of net (chemical) and isotope-exchange rates. The method employs an expanded version of the basic model to monitor explicitly the fate of the label in an experiment. The procedure is quite general, and can be used for steady-state as well as transient kinetic situations, or it can be used in conjunction with existing interactive computer programs for steady-state model analysis. Three numerical examples are presented. First, it is shown, using the conventional (Post-Albers) model for Na+/K(+)-ATPase, that the change in concentration of a labelled intermediate after a change in experimental conditions does not in general reflect the change in the total concentration of that intermediate, and thus labelled intermediate concentrations may be misleading. Second, using a standard co-transport model and a prototype active-transport model (equivalent to a ligand-ATPase), it is shown that the ratio of tracer transport fluxes at steady state yields transport stoichiometries which depend on the experimental conditions, are different from the net apparent stoichiometries, and whose changes with conditions are also different from that of the net stoichiometries. It follows that conclusions drawn on the basis of experimentally determined tracer fluxes should be viewed with some caution. Specifically, a measured influx stoichiometry ligand/ATP (in the ATPase case) of higher than 1:1 does not necessarily imply the existence of more than one site for either ligand on the enzyme.


Tellus B ◽  
2002 ◽  
Vol 54 (3) ◽  
pp. 278-299 ◽  
Author(s):  
Christian Reithmeier ◽  
Robert Sausen

Sign in / Sign up

Export Citation Format

Share Document