scholarly journals Potential Impacts of Sahara Dust Aerosol on Rainfall Vertical Structure Over the Atlantic Ocean as Identified From EOF Analysis

2018 ◽  
Vol 123 (16) ◽  
pp. 8850-8868
Author(s):  
Xue Dong ◽  
Rui Li ◽  
Yu Wang ◽  
Yunfei Fu ◽  
Chun Zhao
2008 ◽  
Vol 42 (11) ◽  
pp. 2668-2681 ◽  
Author(s):  
J GUERRERORASCADO ◽  
B RUIZ ◽  
L ALADOSARBOLEDAS

2000 ◽  
Vol 105 (D12) ◽  
pp. 15263-15275 ◽  
Author(s):  
Marian de Reus ◽  
Frank Dentener ◽  
Andreas Thomas ◽  
Stephan Borrmann ◽  
Johan Ström ◽  
...  

2021 ◽  
Vol 21 (17) ◽  
pp. 13369-13395
Author(s):  
Qianqian Song ◽  
Zhibo Zhang ◽  
Hongbin Yu ◽  
Paul Ginoux ◽  
Jerry Shen

Abstract. We derived two observation-based global monthly mean dust aerosol optical depth (DAOD) climatological datasets from 2007 to 2019 with a 2∘ (latitude) × 5∘ (longitude) spatial resolution, one based on Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and the other on Moderate Resolution Imaging Spectroradiometer (MODIS) observations. In addition, the CALIOP climatological dataset also includes dust vertical extinction profiles. Dust is distinguished from non-dust aerosols based on particle shape information (e.g., lidar depolarization ratio) for CALIOP and on dust size and absorption information (e.g., fine-mode fraction, Ångström exponent, and single-scattering albedo) for MODIS, respectively. The two datasets compare reasonably well with the results reported in previous studies and the collocated Aerosol Robotic Network (AERONET) coarse-mode AOD. Based on these two datasets, we carried out a comprehensive comparative study of the spatial and temporal climatology of dust. On a multi-year average basis, the global (60∘ S–60∘ N) annual mean DAOD is 0.032 and 0.067 according to CALIOP and MODIS retrievals, respectively. In most dust-active regions, CALIOP DAOD generally correlates well (correlation coefficient R>0.6) with the MODIS DAOD, although the CALIOP value is significantly smaller. The CALIOP DAOD is 18 %, 34 %, 54 %, and 31 % smaller than MODIS DAOD over the Sahara, the tropical Atlantic Ocean, the Caribbean Sea, and the Arabian Sea, respectively. Applying a regional specific lidar ratio (LR) of 58 sr instead of the 44 sr used in the CALIOP operational retrieval reduces the difference from 18 % to 8 % over the Sahara and from 34 % to 12 % over the tropical Atlantic Ocean. However, over eastern Asia and the northwestern Pacific Ocean (NWP), the two datasets show weak correlation. Despite these discrepancies, CALIOP and MODIS show similar seasonal and interannual variations in regional DAOD. For dust aerosol over the NWP, both CALIOP and MODIS show a declining trend of DAOD at a rate of about 2 % yr−1. This decreasing trend is consistent with the observed declining trend of DAOD in the southern Gobi Desert at a rate of 3 % yr−1 and 5 % yr−1 according to CALIOP and MODIS, respectively. The decreasing trend of DAOD in the southern Gobi Desert is in turn found to be significantly correlated with increasing vegetation and decreasing surface wind speed in the area.


Atmosphere ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 288 ◽  
Author(s):  
Longlei Li ◽  
Irina Sokolik

Several long-term monitoring of aerosol datasets from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra/Aqua, Multi-angle Imaging SpectroRadiometer (MISR), Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) were used to derive the dust aerosol optical depth (DOD) in Central Asia based on the Angstrom exponent parameter and/or the particle shape. All sensors agree very well on the interannual variability of DOD. The seasonal analysis of DOD and dust occurrences identified the largest dust loading and the most frequent dust occurrence in the spring and summer, respectively. No significant trend was found during the research period in terms of both DOD and the dust occurrence. Further analysis of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) aerosol products on a case-by-case basis in most dust months of 2007 suggested that the vertical structure is varying in terms of the extension and the dust loading from one event to another, although dust particles of most episodes have similar physical characteristics (particle shape and size). Our analysis on the vertical structure of dust plumes, the layer-integrated color ratio and depolarization ratio indicates a varied climate effect (e.g., the direct radiative impact) by mineral dust, dependent on the event being observed in Central Asia.


Sign in / Sign up

Export Citation Format

Share Document