light scattering
Recently Published Documents


TOTAL DOCUMENTS

22328
(FIVE YEARS 1678)

H-INDEX

181
(FIVE YEARS 14)

2022 ◽  
pp. 115-141
Keyword(s):  

Author(s):  
Yoshitaro Sakata ◽  
Nao TERASAKI

Abstract Demand for flexible electronics is increasing due to recent global movements related to IoT. In particular, the ultra-thin glass substrate can be bent, its use is expanding for various applications such as thin liquid crystal panels. On the other hand, fine-polishing techniques such as chemical mechanical polishing treatments, are important techniques in glass substrate manufacturing. However, these techniques may cause microcracks under the surface of glass substrates because they use mechanical friction. We propose a novel non-contact thermal stress-induced light-scattering method (N-SILSM) using a heating device for inspecting surfaces to detect polishing-induced microcracks. In this report, we carry out the selective detection of microcracks and tiny particles using a N-SILSM with temperature variation. Our results show that microcracks and tiny particles can be distinguished and measured by a N-SILSM utilizing temperature change, and that microcrack size can be estimated based on the change in light-scattering intensity.


2022 ◽  
Author(s):  
Gan Zhang ◽  
Venkata Jayasurya Yallapragada ◽  
Michal Shemesh ◽  
Avital Wagner ◽  
Alexander Upcher ◽  
...  

Many animals undergo dramatic changes in colour during development1,2. Changes in predation risk during ontogeny are associated with spectacular switches in defensive colours, typically involving the replacement of skin or the production of new pigment cells3. Ontogenetic colour systems are ideal models for understanding the evolution and formation mechanisms of animal colour which remain largely enigmatic2. We show that defensive colour switching in lizards arises by reorganization of a single photonic system, as an incidental by-product of chromatophore maturation. The defensive blue tail colour of hatchling A. beershebensis lizards is produced by light scattering from premature guanine crystals in underdeveloped iridophore cells. Camouflaged adult tail colours emerge upon reorganization of the guanine crystals into a photonic reflector during chromatophore maturation. The substituent guanine crystals form by the attachment of individual nanoscopic plates, which coalesce during growth to form single crystals. Our results show that the blue colour of hatchlings is a fortuitous, but necessary, precursor to the development of adult colour. Striking functional colours in animals can thus arise not as distinct evolutionary innovations but via exploitation of the timing of naturally occurring changes in chromatophore cell development.


2022 ◽  
Author(s):  
Guillaume Graciani ◽  
John T. King ◽  
Francois Amblard

2022 ◽  
Vol 62 ◽  
pp. C112-C127
Author(s):  
Mahadevan Ganesh ◽  
Stuart Collin Hawkins ◽  
Nino Kordzakhia ◽  
Stefanie Unicomb

We present an efficient Bayesian algorithm for identifying the shape of an object from noisy far field data. The data is obtained by illuminating the object with one or more incident waves. Bayes' theorem provides a framework to find a posterior distribution of the parameters that determine the shape of the scatterer. We compute the distribution using the Markov Chain Monte Carlo (MCMC) method with a Gibbs sampler. The principal novelty of this work is to replace the forward far-field-ansatz wave model (in an unbounded region) in the MCMC sampling with a neural-network-based surrogate that is hundreds of times faster to evaluate. We demonstrate the accuracy and efficiency of our algorithm by constructing the distributions, medians and confidence intervals of non-convex shapes using a Gaussian random circle prior. References Y. Chen. Inverse scattering via Heisenberg’s uncertainty principle. Inv. Prob. 13 (1997), pp. 253–282. doi: 10.1088/0266-5611/13/2/005 D. Colton and R. Kress. Inverse acoustic and electromagnetic scattering theory. 4th Edition. Vol. 93. Applied Mathematical Sciences. References C112 Springer, 2019. doi: 10.1007/978-3-030-30351-8 R. DeVore, B. Hanin, and G. Petrova. Neural Network Approximation. Acta Num. 30 (2021), pp. 327–444. doi: 10.1017/S0962492921000052 M. Ganesh and S. C. Hawkins. A reduced-order-model Bayesian obstacle detection algorithm. 2018 MATRIX Annals. Ed. by J. de Gier et al. Springer, 2020, pp. 17–27. doi: 10.1007/978-3-030-38230-8_2 M. Ganesh and S. C. Hawkins. Algorithm 975: TMATROM—A T-matrix reduced order model software. ACM Trans. Math. Softw. 44.9 (2017), pp. 1–18. doi: 10.1145/3054945 M. Ganesh and S. C. Hawkins. Scattering by stochastic boundaries: hybrid low- and high-order quantification algorithms. ANZIAM J. 56 (2016), pp. C312–C338. doi: 10.21914/anziamj.v56i0.9313 M. Ganesh, S. C. Hawkins, and D. Volkov. An efficient algorithm for a class of stochastic forward and inverse Maxwell models in R3. J. Comput. Phys. 398 (2019), p. 108881. doi: 10.1016/j.jcp.2019.108881 L. Lamberg, K. Muinonen, J. Ylönen, and K. Lumme. Spectral estimation of Gaussian random circles and spheres. J. Comput. Appl. Math. 136 (2001), pp. 109–121. doi: 10.1016/S0377-0427(00)00578-1 T. Nousiainen and G. M. McFarquhar. Light scattering by quasi-spherical ice crystals. J. Atmos. Sci. 61 (2004), pp. 2229–2248. doi: 10.1175/1520-0469(2004)061<2229:LSBQIC>2.0.CO;2 A. Palafox, M. A. Capistrán, and J. A. Christen. Point cloud-based scatterer approximation and affine invariant sampling in the inverse scattering problem. Math. Meth. Appl. Sci. 40 (2017), pp. 3393–3403. doi: 10.1002/mma.4056 M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378 (2019), pp. 686–707. doi: 10.1016/j.jcp.2018.10.045 A. C. Stuart. Inverse problems: A Bayesian perspective. Acta Numer. 19 (2010), pp. 451–559. doi: 10.1017/S0962492910000061 B. Veihelmann, T. Nousiainen, M. Kahnert, and W. J. van der Zande. Light scattering by small feldspar particles simulated using the Gaussian random sphere geometry. J. Quant. Spectro. Rad. Trans. 100 (2006), pp. 393–405. doi: 10.1016/j.jqsrt.2005.11.053


2022 ◽  
Author(s):  
Nikita Ustimenko ◽  
Danil F. Kornovan ◽  
Kseniia V. Baryshnikova ◽  
Andrey B. Evlyukhin ◽  
Mihail I. Petrov

Abstract Exciting optical effects such as polarization control, imaging, and holography were demonstrated at the nanoscale using the complex and irregular structures of nanoparticles with the multipole Mie-resonances in the optical range. The optical response of such particles can be simulated either by full wave numerical simulations or by the widely used analytical coupled multipole method (CMM), however, an analytical solution in the framework of CMM can be obtained only in a limited number of cases. In this paper, a modification of the CMM in the framework of the Born series and its applicability for simulation of light scattering by finite nanosphere structures, maintaining both dipole and quadrupole resonances, are investigated. The Born approximation simplifies an analytical consideration of various systems and helps shed light on physical processes ongoing in that systems. Using Mie theory and Green’s functions approach, we analytically formulate the rigorous coupled dipole-quadrupole equations and their solution in the different-order Born approximations. We analyze in detail the resonant scattering by dielectric nanosphere structures such as dimer and ring to obtain the convergence conditions of the Born series and investigate how the physical characteristics such as absorption in particles, type of multipole resonance, and geometry of ensemble influence the convergence of Born series and its accuracy.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 112
Author(s):  
Si Kuan Thio ◽  
Sung-Yong Park

We present a plasmonic-enhanced dielectrophoretic (DEP) phenomenon to improve optical DEP performance of a floating electrode optoelectronic tweezers (FEOET) device, where aqueous droplets can be effectively manipulated on a light-patterned photoconductive surface immersed in an oil medium. To offer device simplicity and cost-effectiveness, recent studies have utilized a polymer-based photoconductive material such as titanium oxide phthalocyanine (TiOPc). However, the TiOPc has much poorer photoconductivity than that of semiconductors like amorphous silicon (a-Si), significantly limiting optical DEP applications. The study herein focuses on the FEOET device for which optical DEP performance can be greatly enhanced by utilizing plasmonic nanoparticles as light scattering elements to improve light absorption of the low-quality TiOPc. Numerical simulation studies of both plasmonic light scattering and electric field enhancement were conducted to verify wide-angle scattering light rays and an approximately twofold increase in electric field gradient with the presence of nanoparticles. Similarly, a spectrophotometric study conducted on the absorption spectrum of the TiOPc has shown light absorption improvement (nearly twofold) of the TiOPc layer. Additionally, droplet dynamics study experimentally demonstrated a light-actuated droplet speed of 1.90 mm/s, a more than 11-fold improvement due to plasmonic light scattering. This plasmonic-enhanced FEOET technology can considerably improve optical DEP capability even with poor-quality photoconductive materials, thus providing low-cost, easy-fabrication solutions for various droplet-based microfluidic applications.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 266
Author(s):  
Josef Maroušek ◽  
Anna Maroušková ◽  
Rajiv Periakaruppan ◽  
G. M. Gokul ◽  
Ananthan Anbukumaran ◽  
...  

Lignin is a natural biopolymer. A vibrant and rapid process in the synthesis of silica nanoparticles by consuming the lignin as a soft template was carefully studied. The extracted biopolymer from coir pith was employed as capping and stabilizing agents to fabricate the silica nanoparticles (nSi). The synthesized silica nanoparticles (nSi) were characterized by ultraviolet–visible (UV–Vis) spectrophotometry, X-ray diffraction analysis (XRD), Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Analysis (EDAX), Dynamic Light Scattering (DLS) and Fourier-Transform Infrared Spectroscopy (FTIR). All the results obtained jointly and independently verified the formation of silica nanoparticles. In addition, EDAX analysis confirmed the high purity of the nSi composed only of Si and O, with no other impurities. XRD spectroscopy showed the characteristic diffraction peaks for nSi and confirmed the formation of an amorphous nature. The average size of nSi obtained is 18 nm. The surface charge and stability of nSi were analyzed by using the dynamic light scattering (DLS) and thus revealed that the nSi samples have a negative charge (−20.3 mV). In addition, the seed germination and the shoot and root formation on Vigna unguiculata were investigated by using the nSi. The results revealed that the application of nSi enhanced the germination in V. unguiculata. However, further research studies must be performed in order to determine the toxic effect of biogenic nSi before mass production and use of agricultural applications.


Sign in / Sign up

Export Citation Format

Share Document