Effects of Convection Representation and Model Resolution on Diurnal Precipitation Cycle Over the Indian Monsoon Region: Toward a Convection‐Permitting Regional Climate Simulation

2020 ◽  
Vol 125 (16) ◽  
Author(s):  
Rakesh Teja Konduru ◽  
Hiroshi G. Takahashi
2021 ◽  
Author(s):  
Sudipta Ghosh ◽  
Sagnik Dey ◽  
Sushant Das ◽  
Nicole Riemer ◽  
Graziano Giuliani ◽  
...  

Abstract. Mitigation of carbonaceous aerosol emissions is expected to provide climate and health co-benefits. The accurate representation of carbonaceous aerosols in climate models is critical for reducing uncertainties in their climate feedbacks. In this regard, emission fluxes and aerosol life-cycle processes are the two primary sources of uncertainties. Here we demonstrate that incorporating a dynamic ageing scheme and emission estimates that are updated for the local sources improve the representation of carbonaceous aerosols over the Indian monsoon region in a regional climate model, RegCM, compared to its default configuration. The mean BC and OC surface concentrations in 2010 are estimated to be 4.25 and 10.35 μg m−3, respectively, over the Indo-Gangetic Plain (IGP), in the augmented model. The BC column burden over the polluted IGP is found to be 2.47 mg m−2, 69.95 % higher than in the default model configuration and much closer to available observations. The anthropogenic AOD increases by more than 19 % over the IGP due to the model enhancement, also leading to a better agreement with observed AOD. The top-of-the-atmosphere, surface, and atmospheric anthropogenic aerosol shortwave radiative forcing are estimated at −0.3, −9.3, and 9.0 W m−2, respectively, over the IGP and −0.89, −5.33, and 4.44 W m−2, respectively, over Peninsular India. Our results suggest that both the accurate estimates of emission fluxes and a better representation of aerosol processes are required to improve the aerosol life cycle representation in the climate model.


2015 ◽  
Vol 64 (2) ◽  
pp. 123-140 ◽  
Author(s):  
P Zanis ◽  
E Katragkou ◽  
C Ntogras ◽  
G Marougianni ◽  
A Tsikerdekis ◽  
...  

2017 ◽  
Vol 17 (1) ◽  
pp. 531-549 ◽  
Author(s):  
Sanjay Kumar Mehta ◽  
Madineni Venkat Ratnam ◽  
Sukumarapillai V. Sunilkumar ◽  
Daggumati Narayana Rao ◽  
Boddapaty V. Krishna Murthy

Abstract. The diurnal variation of atmospheric boundary layer (ABL) height is studied using high-resolution radiosonde observations available at 3 h intervals for 3 days continuously from 34 intensive campaigns conducted during the period December 2010–March 2014 over a tropical station Gadanki (13.5° N, 79.2° E; 375 m), in the Indian monsoon region. The heights of the ABL during the different stages of its diurnal evolution, namely, the convective boundary layer (CBL), the stable boundary layer (SBL), and the residual layer (RL) are obtained to study the diurnal variabilities. A clear diurnal variation is observed in 9 campaigns out of the 34 campaigns. In 7 campaigns the SBL did not form in the entire day and in the remaining 18 campaigns the SBL formed intermittently. The SBL forms for 33–55 % of the time during nighttime and 9 and 25 % during the evening and morning hours, respectively. The mean SBL height is within 0.3 km above the surface which increases slightly just after midnight (02:00 IST) and remains almost constant until the morning. The mean CBL height is within 3.0 km above the surface, which generally increases from morning to evening. The mean RL height is within 2 km above the surface which generally decreases slowly as the night progresses. The diurnal variation of the ABL height over the Indian region is stronger during the pre-monsoon and weaker during winter season. The CBL is higher during the summer monsoon and lower during the winter season while the RL is higher during the winter season and lower during the summer season. During all the seasons, the ABL height peaks during the afternoon (∼ 14:00 IST) and remains elevated until evening (∼ 17:00 IST). The ABL suddenly collapses at 20:00 IST and increases slightly in the night. Interestingly, it is found that the low level clouds have an effect on the ABL height variability, but the deep convective clouds do not. The lifting condensation level (LCL) is generally found to occur below the ABL for the majority of the database and they are randomly related.


2016 ◽  
Vol 48 (7-8) ◽  
pp. 2339-2357 ◽  
Author(s):  
Jianping Tang ◽  
Shuyu Wang ◽  
Xiaorui Niu ◽  
Pinhong Hui ◽  
Peishu Zong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document