scholarly journals The Impact of Rain on Ocean Surface Waves and Currents

2020 ◽  
Vol 47 (7) ◽  
Author(s):  
Nathan J. M. Laxague ◽  
Christopher J. Zappa
2014 ◽  
Author(s):  
James M. Kaihatu ◽  
Alexandru Sheremet ◽  
Jame M. Smith ◽  
Hendrik L. Tolman

2021 ◽  
Vol 8 ◽  
Author(s):  
Tzu-Yin Chang ◽  
Hongey Chen ◽  
Shih-Chun Hsiao ◽  
Han-Lun Wu ◽  
Wei-Bo Chen

The ocean surface waves during Super Typhoons Maria (2018), Lekima (2019), and Meranti (2016) were reproduced using hybrid typhoon winds and a fully coupled wave-tide-circulation modeling system (SCHISM-WWM-III). The hindcasted significant wave heights are in good agreement with the along-track significant wave heights measured by the altimeters aboard the SARAL (Satellite with ARgos and ALtiKa) and Jason-2 satellites. Two numerical experiments pairing Super Typhoons Maria (2018) and Meranti (2016) and Super Typhoons Lekima (2019) and Meranti (2016) were conducted to analyze the storm wave characteristics of binary and individual typhoons. Four points located near the tracks of the three super typhoons were selected to elucidate the effects of binary typhoons on ocean surface waves. The comparisons indicate that binary typhoons not only cause an increase in the significant wave height simulations at four selected pints but also result in increases in the one-dimensional wave energy and two-dimensional directional wave spectra. Our results also reveal that the effects of binary typhoons on ocean surface waves are more significant at the periphery of the typhoon than near the center of the typhoon. The interactions between waves generated by Super Typhoons Maria (2018) and Meranti (2016) or Super Typhoons Lekima (2019) and Meranti (2016) might be diminished by Taiwan Island even if the separation distance between two typhoons is <700 km.


2021 ◽  
Author(s):  
Stefanie Rynders ◽  
Yevgeny Aksenov ◽  
Andrew Coward

<p>Marginal ice zones are areas with many interactions between ocean, surface waves, sea ice and atmosphere. Increasing computational power makes it possible to perform increasingly complex simulations of marine systems, with more components of the climate system that are more interacting. We have produced a set of increasingly coupled simulations with NEMO, CICE and WW3, exchanging more and more variables. The configuration is global at 1 degree resolution. The focus is on wave attenuation in sea ice and the impact of using modelled wave height for ocean mixing due to breaking waves. The example simulations give an idea of the possible impact on the simulated state versus the still considerable computational cost.</p>


2019 ◽  
Vol 46 (3) ◽  
pp. 1731-1739
Author(s):  
Mikhail Dobrynin ◽  
Tobias Kleine ◽  
André Düsterhus ◽  
Johanna Baehr

2019 ◽  
Vol 12 (8) ◽  
pp. 3449-3480 ◽  
Author(s):  
Gianandrea Mannarini ◽  
Lorenzo Carelli

Abstract. The latest development of the ship-routing model published in Mannarini et al. (2016a) is VISIR-1.b, which is presented here. The new version of the model targets large ocean-going vessels by considering both ocean surface gravity waves and currents. To effectively analyse currents in a graph-search method, new equations are derived and validated against an analytical benchmark. A case study in the Atlantic Ocean is presented, focussing on a route from the Chesapeake Bay to the Mediterranean Sea and vice versa. Ocean analysis fields from data-assimilative models (for both ocean state and hydrodynamics) are used. The impact of waves and currents on transatlantic crossings is assessed through mapping of the spatial variability in the tracks, an analysis of their kinematics, and their impact on the Energy Efficiency Operational Indicator (EEOI) of the International Maritime Organization. Sailing with or against the main ocean current is distinguished. The seasonal dependence of the EEOI savings is evaluated, and greater savings with a higher intra-monthly variability during winter crossings are indicated in the case study. The total monthly mean savings are between 2 % and 12 %, while the contribution of ocean currents is between 1 % and 4 %. Several other ocean routes are also considered, providing a pan-Atlantic scenario assessment of the potential gains in energy efficiency from optimal tracks, linking them to regional meteo-oceanographic features.


2018 ◽  
Vol 129 ◽  
pp. 58-74 ◽  
Author(s):  
Andrew G. Marshall ◽  
Mark A. Hemer ◽  
Harry H. Hendon ◽  
Kathleen L. McInnes

Sign in / Sign up

Export Citation Format

Share Document