scholarly journals Using Sound and Vibration Signals to Understand the Subsurface

Eos ◽  
2022 ◽  
Author(s):  
Yingping Li ◽  
Martin Karrenbach ◽  

A new book explores Distributed Acoustic Sensing, a technology with a range of applications across geophysics and related fields.

2021 ◽  
Author(s):  
Sara Klaasen ◽  
Patrick Paitz ◽  
Jan Dettmer ◽  
Andreas Fichtner

<p>We present one of the first applications of Distributed Acoustic Sensing (DAS) in a volcanic environment. The goals are twofold: First, we want to examine the feasibility of DAS in such a remote and extreme environment, and second, we search for active volcanic signals of Mount Meager in British Columbia (Canada). </p><p>The Mount Meager massif is an active volcanic complex that is estimated to have the largest geothermal potential in Canada and caused its largest recorded landslide in 2010. We installed a 3-km long fibre-optic cable at 2000 m elevation that crosses the ridge of Mount Meager and traverses the uppermost part of a glacier, yielding continuous measurements from 19 September to 17 October 2019.</p><p>We identify ~30 low-frequency (0.01-1 Hz) and 3000 high-frequency (5-45 Hz) events. The low-frequency events are not correlated with microseismic ocean or atmospheric noise sources and volcanic tremor remains a plausible origin. The frequency-power distribution of the high-frequency events indicates a natural origin, and beamforming on these events reveals distinct event clusters, predominantly in the direction of the main peaks of the volcanic complex. Numerical examples show that we can apply conventional beamforming to the data, and that the results are improved by taking the signal-to-noise ratio of individual channels into account.</p><p>The increased data quantity of DAS can outweigh the limitations due to the lower quality of individual channels in these hazardous and remote environments. We conclude that DAS is a promising tool in this setting that warrants further development.</p>


2021 ◽  
Author(s):  
Fabian Walter ◽  
Patrick Paitz ◽  
Andreas Fichtner ◽  
Pascal Edme ◽  
Wojciech Gajek ◽  
...  

<p>Over the past 1-2 decades, seismological measurements have provided new and unique insights into glacier and ice sheet dynamics. At the same time, sensor coverage is typically limited in harsh glacial environments with littile or no access. Turning kilometer-long fiber optic cables placed on the Earth’s surface into thousands of seismic sensors, Distributed Acoustic Sensing (DAS) may overcome the limitation of sensor coverage in the cryosphere.</p><p>First DAS applications on the Greenland and Antarctic ice sheets and on Alpine glacier ice have highlighted the technique’s superiority. Signals of natural and man-made seismic sources can be resolved with an unrivaled level of detail. This offers glaciologists new perspectives to interpret their seismograms in terms of ice structure, basal boundary conditions and source locations. However, previous studies employed only relatively small network scales with a point-like borehole deployment or < 1 km cable aperture at the ice surface.</p><p>Here we present a DAS installation, which aims to cover the majority of an Alpine glacier catchment: For one month in summer 2020 we deployed a 9 km long fiber optic cable on Rhonegletscher, Switzerland, and gathered continuous DAS data. The cable followed the glacier’s central flow line starting in the lowest kilometer of the ablation zone and extending well into the accumulation area. Even for a relatively small mountain glacier such as Rhonegletscher, cable deployment was a considerable logistical challenge. However, initial data analysis illustrates the benefit compared to conventional cryoseismological instrumentation: DAS measurements capture ground deformation over many octaves, including typical high-frequency englacial sources (10s to 100s of Hz) related to crevasse formation and basal sliding as well as long period signals (10s to 100s of seconds) of ice deformation. Depending on the presence of a snow cover, DAS records contain strong environmental noise (wind, meltwater flow, precipitation) and thus exhibit lower signal-to-noise ratios compared to conventional on-ice seismic installations. This is nevertheless outweighed by the advantage of monitoring ground unrest and ice deformation of nearly an entire glacier. We present a first compilation of signal and noise records and discuss future directions to leverage DAS data sets in glaciological research.</p><p> </p><p> </p><p> </p>


2021 ◽  
Author(s):  
Zhongwen Zhan ◽  
Mattia Cantono ◽  
Jorge Castellanos ◽  
Miguel González Herráez ◽  
Zhensheng Jia ◽  
...  

<p>The oceans present a major gap in geophysical instrumentation, hindering fundamental research on submarine earthquakes and the Earth’s interior structure, as well as effective earthquake and tsunami warning for offshore events. Emerging fiber-optic sensing technologies that can leverage submarine telecommunication cables present an new opportunity in filling the data gap. Marra et al. (2018) turned a 96 km long submarine cable into a sensitive seismic sensor using ultra-stable laser interferometry of a round-tripped signal. Another technology, Distributed Acoustic Sensing (DAS), interrogates intrinsic Rayleigh backscattering and converts tens of kilometers of dedicated fiber into thousands of seismic strainmeters on the seafloor (e.g., Lindsey et al., 2019; Sladen et al., 2019; Williams et al., 2019; Spica et al., 2020). Zhan et al. (2021) successfully sensed seismic and water waves over a 10,000 km long submarine cable connecting Los Angeles and Valparaiso, by monitoring the polarization of regular optical telecommunication channels. However, these new technologies have substantially different levels of sensitivity, coverage, spatial resolution, and scalability. In this talk, we advocate that strategic combinations of the different sensing techniques (including conventional geophysical networks) are necessary to provide the broadest coverage of the seafloor while making high-fidelity, physically interpretable measurements. Strategic collaborations between the geophysics community and telecommunication community without burdening the telecomm operation (e.g., by multiplexing or using regular telecom signals) will be critical to the long term success.</p><p> </p><p>Marra, G., C. Clivati, R. Luckett, A. Tampellini, J. Kronjäger, L. Wright, A. Mura, F. Levi, S. Robinson, A. Xuereb, B. Baptie, D. Calonico, 2018. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science, eaat4458.</p><p>Lindsey, N.J., T. C. Dawe, J. B. Ajo-Franklin, 2019. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science. <strong>366</strong>, 1103–1107.</p><p>Sladen, A., D. Rivet, J. P. Ampuero, L. De Barros, Y. Hello, G. Calbris, P. Lamare, 2019. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat Commun. <strong>10</strong>, 5777.</p><p>Spica, Z.J., Nishida, K., Akuhara, T., Pétrélis, F., Shinohara, M. and Yamada, T., 2020. Marine Sediment Characterized by Ocean‐Bottom Fiber‐Optic Seismology. Geophysical Research Letters, 47(16), p.e2020GL088360.</p><p>Williams, E.F., M. R. Fernández-Ruiz, R. Magalhaes, R. Vanthillo, Z. Zhan, M. González-Herráez, H. F. Martins, 2019. Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nat Commun. <strong>10</strong>, 5778.</p><p>Zhan, Z., M. Cantono, V. Kamalov, A. Mecozzi, R. Muller, S. Yin, J.C. Castellanos, 2021. Optical polarization-based seismic and water wave sensing on transoceanic cables. Science, in press.</p>


2021 ◽  
Author(s):  
T. Hudson ◽  
A. Baird ◽  
J. Kendall ◽  
S. Kufner ◽  
A. Brisbourne ◽  
...  

Author(s):  
Patrick Paitz ◽  
Pascal Edme ◽  
Dominik Gräff ◽  
Fabian Walter ◽  
Joseph Doetsch ◽  
...  

ABSTRACT With the potential of high temporal and spatial sampling and the capability of utilizing existing fiber-optic infrastructure, distributed acoustic sensing (DAS) is in the process of revolutionizing geophysical ground-motion measurements, especially in remote and urban areas, where conventional seismic networks may be difficult to deploy. Yet, for DAS to become an established method, we must ensure that accurate amplitude and phase information can be obtained. Furthermore, as DAS is spreading into many different application domains, we need to understand the extent to which the instrument response depends on the local environmental properties. Based on recent DAS response research, we present a general workflow to empirically quantify the quality of DAS measurements based on the transfer function between true ground motion and observed DAS waveforms. With a variety of DAS data and reference measurements, we adapt existing instrument-response workflows typically in the frequency band from 0.01 to 10 Hz to different experiments, with signal frequencies ranging from 1/3000 to 60 Hz. These experiments include earthquake recordings in an underground rock laboratory, hydraulic injection experiments in granite, active seismics in agricultural soil, and icequake recordings in snow on a glacier. The results show that the average standard deviations of both amplitude and phase responses within the analyzed frequency ranges are in the order of 4 dB and 0.167π radians, respectively, among all experiments. Possible explanations for variations in the instrument responses include the violation of the assumption of constant phase velocities within the workflow due to dispersion and incorrect ground-motion observations from reference measurements. The results encourage further integration of DAS-based strain measurements into methods that exploit complete waveforms and not merely travel times, such as full-waveform inversion. Ultimately, our developments are intended to provide a quantitative assessment of site- and frequency-dependent DAS data that may help establish best practices for upcoming DAS surveys.


Sign in / Sign up

Export Citation Format

Share Document