Recent studies proposed that the use of internal and external coordinate systems may be more flexible in congenitally blind when compared to sighted individuals. To investigate this hypothesis further, we asked congenitally blind and sighted people to perform, with the hands uncrossed and crossed over the body midline, a tactile TOJ and an auditory Simon task. Crucially, both tasks were carried out under task instructions either favoring the use of an internal (left vs. right hand) or an external (left vs. right hemispace) frame of reference. In the internal condition of the TOJ task, our results replicated previous findings (Röder et al., 2004) showing that hand crossing only impaired sighted participants’ performance, suggesting that blind people did not activate by default a (conflicting) external frame of reference. However, under external instructions, a decrease of performance was observed in both groups, suggesting that even blind people activated an external coordinate system in this condition. In the Simon task, and in contrast with a previous study (Roder et al., 2007), both groups responded more efficiently when the sound was presented from the same side of the response (‘‘Simon effect’’) independently of the hands position. This was true under the internal and external conditions, therefore suggesting that blind and sighted by default activated an external coordinate system in this task. All together, these data comprehensively demonstrate how visual experience shapes the default weight attributed to internal and external coordinate systems for action and perception depending on task demand.