CD Summary, December 9, 2008 [Climate change and communicable disease]

2008 ◽  
Author(s):  
Anthony Costello ◽  
Mark Maslin ◽  
Hugh Montgomery ◽  
Anne M. Johnson ◽  
Paul Ekins

The health effects of climate change have had relatively little attention from climate scientists and governments. Climate change will be a major threat to population health in the current century through its potential effects on communicable disease, heat stress, food and water security, extreme weather events, vulnerable shelter and population migration. This paper addresses three health-sector strategies to manage the health effects of climate change—promotion of mitigation, tackling the pathways that lead to ill-health and strengthening health systems. Mitigation of greenhouse gas (GHG) emissions is affordable, and low-carbon technologies are available now or will be in the near future. Pathways to ill-health can be managed through better information, poverty reduction, technological innovation, social and cultural change and greater coordination of national and international institutions. Strengthening health systems requires increased investment in order to provide effective public health responses to climate-induced threats to health, equitable treatment of illness, promotion of low-carbon lifestyles and renewable energy solutions within health facilities. Mitigation and adaptation strategies will produce substantial benefits for health, such as reductions in obesity and heart disease, diabetes, stress and depression, pneumonia and asthma, as well as potential cost savings within the health sector. The case for mitigating climate change by reducing GHGs is overwhelming. The need to build population resilience to the global health threat from already unavoidable climate change is real and urgent. Action must not be delayed by contrarians, nor by catastrophic fatalists who say it is all too late.


2010 ◽  
Vol 11 (5) ◽  
pp. 146-148 ◽  
Author(s):  
Andrew Nichols ◽  
Janet Richardson ◽  
Veronica Maynard

Author(s):  
Mazni Baharom ◽  
Norfazilah Ahmad ◽  
Rozita Hod ◽  
Fadly Syah Arsad ◽  
Fredolin Tangang

Background: Climate change poses a real challenge and has contributed to causing the emergence and re-emergence of many communicable diseases of public health importance. Here, we reviewed scientific studies on the relationship between meteorological factors and the occurrence of dengue, malaria, cholera, and leptospirosis, and synthesized the key findings on communicable disease projection in the event of global warming. Method: This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 flow checklist. Four databases (Web of Science, Ovid MEDLINE, Scopus, EBSCOhost) were searched for articles published from 2005 to 2020. The eligible articles were evaluated using a modified scale of a checklist designed for assessing the quality of ecological studies. Results: A total of 38 studies were included in the review. Precipitation and temperature were most frequently associated with the selected climate-sensitive communicable diseases. A climate change scenario simulation projected that dengue, malaria, and cholera incidence would increase based on regional climate responses. Conclusion: Precipitation and temperature are important meteorological factors that influence the incidence of climate-sensitive communicable diseases. Future studies need to consider more determinants affecting precipitation and temperature fluctuations for better simulation and prediction of the incidence of climate-sensitive communicable diseases.


Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 634 ◽  
Author(s):  
Caradee Y. Wright ◽  
Mary Norval ◽  
Thandi Kapwata ◽  
David Jean du Preez ◽  
Bianca Wernecke ◽  
...  

Climate change is associated with shifts in global weather patterns, especially an increase in ambient temperature, and is deemed a formidable threat to human health. Skin cancer, a non-communicable disease, has been underexplored in relation to a changing climate. Exposure to solar ultraviolet radiation (UVR) is the major environmental risk factor for skin cancer. South Africa is situated in the mid-latitudes and experiences relatively high levels of sun exposure with summertime UV Index values greater than 10. The incidence of skin cancer in the population group with fair skin is considered high, with cost implications relating to diagnosis and treatment. Here, the relationship between skin cancer and several environmental factors likely to be affected by climate change in South Africa are discussed including airborne pollutants, solar UVR, ambient temperature and rainfall. Recommended strategies for personal sun protection, such as shade, clothing, sunglasses and sunscreen, may change as human behaviour adapts to a warming climate. Further research and data are required to assess any future impact of climate change on the incidence of skin cancer in South Africa.


2016 ◽  
Vol 10 (6) ◽  
pp. 797-804 ◽  
Author(s):  
Deon V. Canyon ◽  
Rick Speare ◽  
Frederick M. Burkle

AbstractObjectiveClimate change is expected to cause extensive shifts in the epidemiology of infectious and vector-borne diseases. Scenarios on the effects of climate change typically attribute altered distribution of communicable diseases to a rise in average temperature and altered incidence of infectious diseases to weather extremes.MethodsRecent evaluations of the effects of climate change on Hawaii have not explored this link. It may be expected that Hawaii’s natural geography and robust water, sanitation, and health care infrastructure renders residents less vulnerable to many threats that are the focus on smaller, lesser developed, and more vulnerable Pacific islands. In addition, Hawaii’s communicable disease surveillance and response system can act rapidly to counter increases in any disease above baseline and to redirect resources to deal with changes, particularly outbreaks due to exotic pathogens.ResultsThe evidence base examined in this article consistently revealed very low climate sensitivity with respect to infectious and mosquito-borne diseases.ConclusionsA community resilience model is recommended to increase adaptive capacity for all possible climate change impacts rather an approach that focuses specifically on communicable diseases. (Disaster Med Public Health Preparedness. 2016;10:797–804)


Author(s):  
Emily Ying Yang Chan

This chapter provides an overview of the background and objectives of the book and an overall description of the book structure. It introduces health protection as a major knowledge area in public health to prevent, protect, and manage health risks, highlights its international and multidisciplinary nature, and points out the book’s aims to provide key health protection concepts in a multidisciplinary way and discuss new frontiers of health protection to fill the current gap in the availability of relevant textbooks. Lastly, it outlines structure of the book and the key themes of the chapters including health protection core principles, climate change, emergency and disaster, Health Emergency and Disaster Risk Management (Health-EDRM), communicable disease, environmental health, planetary health and sustainability, and health protection challenges and opportunities.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


Sign in / Sign up

Export Citation Format

Share Document