Initial Monte Carlo Findings on Maximum Likelihood Meta-Analysis

2004 ◽  
Author(s):  
Patrick D. Converse ◽  
Frederick L. Oswald
1992 ◽  
Vol 60 (3) ◽  
pp. 209-220 ◽  
Author(s):  
Joseph Felsenstein

SummaryWe would like to use maximum likelihood to estimate parameters such as the effective population size Ne, or, if we do not know mutation rates, the product 4Neμof mutation rate per site and effective population size. To compute the likelihood for a sample of unrecombined nucleotide sequences taken from a random-mating population it is necessary to sum over all genealogies that could have led to the sequences, computing for each one the probability that it would have yielded the sequences, and weighting each one by its prior probability. The genealogies vary in tree topology and in branch lengths. Although the likelihood and the prior are straightforward to compute, the summation over all genealogies seems at first sight hopelessly difficult. This paper reports that it is possible to carry out a Monte Carlo integration to evaluate the likelihoods pproximately. The method uses bootstrap sampling of sites to create data sets for each of which a maximum likelihood tree is estimated. The resulting trees are assumed to be sampled from a distribution whose height is proportional to the likelihood surface for the full data. That it will be so is dependent on a theorem which is not proven, but seems likely to be true if the sequences are not short. One can use the resulting estimated likelihood curve to make a maximum likelihood estimate of the parameter of interest, Ne or of 4Neμ. The method requires at least 100 times the computational effort required for estimation of a phylogeny by maximum likelihood, but is practical on today's work stations. The method does not at present have any way of dealing with recombination.


2006 ◽  
Vol 3 (4) ◽  
pp. 1603-1627 ◽  
Author(s):  
W. Wang ◽  
P. H. A. J. M. van Gelder ◽  
J. K. Vrijling ◽  
X. Chen

Abstract. The Lo's R/S tests (Lo, 1991), GPH test (Geweke and Porter-Hudak, 1983) and the maximum likelihood estimation method implemented in S-Plus (S-MLE) are evaluated through intensive Mote Carlo simulations for detecting the existence of long-memory. It is shown that, it is difficult to find an appropriate lag q for Lo's test for different AR and ARFIMA processes, which makes the use of Lo's test very tricky. In general, the GPH test outperforms the Lo's test, but for cases where there is strong autocorrelations (e.g., AR(1) processes with φ=0.97 or even 0.99), the GPH test is totally useless, even for time series of large data size. Although S-MLE method does not provide a statistic test for the existence of long-memory, the estimates of d given by S-MLE seems to give a good indication of whether or not the long-memory is present. Data size has a significant impact on the power of all the three methods. Generally, the power of Lo's test and GPH test increases with the increase of data size, and the estimates of d with GPH test and S-MLE converge with the increase of data size. According to the results with the Lo's R/S test (Lo, 1991), GPH test (Geweke and Porter-Hudak, 1983) and the S-MLE method, all daily flow series exhibit long-memory. The intensity of long-memory in daily streamflow processes has only a very weak positive relationship with the scale of watershed.


Author(s):  
Richard Chiburis ◽  
Michael Lokshin

We discuss the estimation of a regression model with an ordered-probit selection rule. We have written a Stata command, oheckman, that computes two-step and full-information maximum-likelihood estimates of this model. Using Monte Carlo simulations, we compare the performances of these estimators under various conditions.


1988 ◽  
Vol 130 ◽  
pp. 537-537
Author(s):  
Rachel Webster ◽  
Michael Fitchett ◽  
Paul Hewett ◽  
Matthew Colless

We have developed a new statistical method based on maximum likelihood to test for the existence of two subclumps in data of arbitrary dimensionality (Fitchett 1987). The statistic, which is called the Lee function, can be calibrated using Monte Carlo simulations under various null hypotheses.


Sign in / Sign up

Export Citation Format

Share Document