scholarly journals Contribution of changes in atmospheric circulation patterns to extreme temperature trends

Nature ◽  
2015 ◽  
Vol 522 (7557) ◽  
pp. 465-469 ◽  
Author(s):  
Daniel E. Horton ◽  
Nathaniel C. Johnson ◽  
Deepti Singh ◽  
Daniel L. Swain ◽  
Bala Rajaratnam ◽  
...  
Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1584
Author(s):  
Ivana Tošić ◽  
Suzana Putniković ◽  
Milica Tošić ◽  
Irida Lazić

In this study, extremely warm and cold temperature events were examined based on daily maximum (Tx) and minimum (Tn) temperatures observed at 11 stations in Serbia during the period 1949–2018. Summer days (SU), warm days (Tx90), and heat waves (HWs) were calculated based on daily maximum temperatures, while frost days (FD) and cold nights (Tn10) were derived from daily minimum temperatures. Absolute maximum and minimum temperatures in Serbia rose but were statistically significant only for Tx in winter. Positive trends of summer and warm days, and negative trends of frost days and cold nights were found. A high number of warm events (SU, Tx90, and HWs) were recorded over the last 20 years. Multiple linear regression (MLR) models were applied to find the relationship between extreme temperature events and atmospheric circulation. Typical atmospheric circulation patterns, previously determined for Serbia, were used as predictor variables. It was found that MLR models gave the best results for Tx90, FD, and Tn10 in winter.


2012 ◽  
Vol 25 (20) ◽  
pp. 7266-7281 ◽  
Author(s):  
Paul C. Loikith ◽  
Anthony J. Broccoli

Abstract Motivated by a desire to understand the physical mechanisms involved in future anthropogenic changes in extreme temperature events, the key atmospheric circulation patterns associated with extreme daily temperatures over North America in the current climate are identified. The findings show that warm extremes at most locations are associated with positive 500-hPa geopotential height and sea level pressure anomalies just downstream with negative anomalies farther upstream. The orientation, physical characteristics, and spatial scale of these circulation patterns vary based on latitude, season, and proximity to important geographic features (i.e., mountains, coastlines). The anomaly patterns associated with extreme cold events tend to be similar to, but opposite in sign of, those associated with extreme warm events, especially within the westerlies, and tend to scale with temperature in the same locations. Circulation patterns aloft are more coherent across the continent than those at the surface where local surface features influence the occurrence of and patterns associated with extreme temperature days. Temperature extremes may be more sensitive to small shifts in circulation at locations where temperature is strongly influenced by mountains or large water bodies, or at the margins of important large-scale circulation patterns making such locations more susceptible to nonlinear responses to future climate change. The identification of these patterns and processes will allow for a thorough evaluation of the ability of climate models to realistically simulate extreme temperatures and their future trends.


2015 ◽  
Vol 28 (5) ◽  
pp. 2063-2079 ◽  
Author(s):  
Paul C. Loikith ◽  
Anthony J. Broccoli

Abstract Circulation patterns associated with extreme temperature days over North America, as simulated by a suite of climate models, are compared with those obtained from observations. The authors analyze 17 coupled atmosphere–ocean general circulation models contributing to the fifth phase of the Coupled Model Intercomparison Project. Circulation patterns are defined as composites of anomalies in sea level pressure and 500-hPa geopotential height concurrent with days in the tails of temperature distribution. Several metrics used to systematically describe circulation patterns associated with extreme temperature days are applied to both the observed and model-simulated data. Additionally, self-organizing maps are employed as a means of comparing observed and model-simulated circulation patterns across the North American domain. In general, the multimodel ensemble resembles the observed patterns well, especially in areas removed from complex geographic features (e.g., mountains and coastlines). Individual model results vary; however, the majority of models capture the major features observed. The multimodel ensemble captures several key features, including regional variations in the strength and orientation of atmospheric circulation patterns associated with extreme temperatures, both near the surface and aloft, as well as variations with latitude and season. The results from this work suggest that these models can be used to comprehensively examine the role that changes in atmospheric circulation will play in projected changes in temperature extremes because of future anthropogenic climate warming.


Sign in / Sign up

Export Citation Format

Share Document