scholarly journals Extreme Temperature Events in Serbia in Relation to Atmospheric Circulation

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1584
Author(s):  
Ivana Tošić ◽  
Suzana Putniković ◽  
Milica Tošić ◽  
Irida Lazić

In this study, extremely warm and cold temperature events were examined based on daily maximum (Tx) and minimum (Tn) temperatures observed at 11 stations in Serbia during the period 1949–2018. Summer days (SU), warm days (Tx90), and heat waves (HWs) were calculated based on daily maximum temperatures, while frost days (FD) and cold nights (Tn10) were derived from daily minimum temperatures. Absolute maximum and minimum temperatures in Serbia rose but were statistically significant only for Tx in winter. Positive trends of summer and warm days, and negative trends of frost days and cold nights were found. A high number of warm events (SU, Tx90, and HWs) were recorded over the last 20 years. Multiple linear regression (MLR) models were applied to find the relationship between extreme temperature events and atmospheric circulation. Typical atmospheric circulation patterns, previously determined for Serbia, were used as predictor variables. It was found that MLR models gave the best results for Tx90, FD, and Tn10 in winter.

2020 ◽  
Vol 11 (4) ◽  
pp. 855-873
Author(s):  
Kathrin Wehrli ◽  
Mathias Hauser ◽  
Sonia I. Seneviratne

Abstract. Extreme temperatures were experienced over a large part of the Northern Hemisphere during the 2018 boreal summer (hereafter referred to as “NH2018 event”), leading to major impacts on agriculture and society in the affected countries. Previous studies highlighted both the anomalous atmospheric circulation patterns during the event and the background warming due to human greenhouse gas emissions as main drivers of the event. In this study, we present Earth system model experiments investigating different storylines of the NH2018 event given the same atmospheric circulation and alternative background global warming for no human imprint, the 2018 conditions, and different mean global warming levels 1.5, 2, 3 and 4 ∘C. The results reveal that the human-induced background warming was a strong contributor to the intensity of the NH2018 event, and that resulting extremes under similar atmospheric circulation conditions at higher levels of global warming would reach dangerous levels. Compared to 9 % during the NH2018 event, about 13 % (34 %) of the inhabited or agricultural area in the investigated region would reach daily maximum temperatures over 40 ∘C under 2 ∘C (4 ∘C) of global warming and similar atmospheric circulation conditions.


2020 ◽  
Author(s):  
Ivana Tosic ◽  
Suzana Putniković ◽  
Milica Tošić

<p>Worldwide studies revealed a general increase in frequency and severity of warm extreme temperature events. In this study, extreme temperature events including Heat waves (HWs) are examined. Extreme indices are calculated based on daily maximum temperature (Tx). The following definitions are employed: SU - number of days with Tx > 25 °C, umber of days with Tx > 90<sup>th</sup> percentile, and WSDI - number of days in intervals of at least six consecutive days for which Tx is higher than the calendar day 90<sup>th</sup> percentile. Daily values of air temperatures from 11 meteorological stations distributed across Serbia were used for the period 1949–2017.</p><p>Trends of extreme temperature events and their frequencies are examined. The period 1949–2017 are characterised by a warming of extreme temperature indices (SU, Tx90, HWs). It is found that maximum air temperatures increased at all stations, but statistically significant at 6 stations in winter, 4 stations in summer and two stations in spring. The average number of SU per station was between 63.1 in Novi Sad to 73.5 in Negotin during the summer season. Significant increase of SU is recorded in summer for 10 out of 11 stations. Positive trends of SU and Tx90 are observed for all stations and seasons, except in Novi Sad. The average number of Tx90 is about 9 for all stations in all seasons. The longest heat waves prevailed in 2012, but the most severe are recorded in 2007. Increasing of warm extreme events in Serbia are in agreement with studies for different regions of the world.</p>


2012 ◽  
Vol 25 (20) ◽  
pp. 7266-7281 ◽  
Author(s):  
Paul C. Loikith ◽  
Anthony J. Broccoli

Abstract Motivated by a desire to understand the physical mechanisms involved in future anthropogenic changes in extreme temperature events, the key atmospheric circulation patterns associated with extreme daily temperatures over North America in the current climate are identified. The findings show that warm extremes at most locations are associated with positive 500-hPa geopotential height and sea level pressure anomalies just downstream with negative anomalies farther upstream. The orientation, physical characteristics, and spatial scale of these circulation patterns vary based on latitude, season, and proximity to important geographic features (i.e., mountains, coastlines). The anomaly patterns associated with extreme cold events tend to be similar to, but opposite in sign of, those associated with extreme warm events, especially within the westerlies, and tend to scale with temperature in the same locations. Circulation patterns aloft are more coherent across the continent than those at the surface where local surface features influence the occurrence of and patterns associated with extreme temperature days. Temperature extremes may be more sensitive to small shifts in circulation at locations where temperature is strongly influenced by mountains or large water bodies, or at the margins of important large-scale circulation patterns making such locations more susceptible to nonlinear responses to future climate change. The identification of these patterns and processes will allow for a thorough evaluation of the ability of climate models to realistically simulate extreme temperatures and their future trends.


2020 ◽  
Author(s):  
Kathrin Wehrli ◽  
Mathias Hauser ◽  
Sonia I. Seneviratne

Abstract. Extreme temperatures were experienced over a large part of the Northern Hemisphere during the 2018 boreal summer (hereafter referred to as NH2018 event), leading to major impacts to agriculture and society in the affected countries. Previous studies highlighted both the anomalous atmospheric circulation patterns during the event and the background warming due to human greenhouse gas emissions as main drivers for the event. In this study, we present Earth System Model experiments investigating different storylines of the NH2018 event given the same atmospheric circulation and alternative background global warming for: no human imprint, the 2018 conditions, and different mean global warming levels (1.5 °C, 2 °C, 3 °C, and 4 °C). The results reveal that the human-induced background warming was a strong contributor to the intensity of the NH2018 event, and that resulting extremes under similar atmospheric circulation conditions at higher levels of global warming would reach very dangerous levels. About 32 % (61 %) of the inhabited or agricultural area in the investigated region would reach maximum temperatures over 40 °C under 2 °C (4 °C) of global warming and similar atmospheric circulation conditions.


Geografie ◽  
2017 ◽  
Vol 122 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Dragan D. Milošević ◽  
Stevan M. Savić ◽  
Uglješa Stankov ◽  
Igor Žiberna ◽  
Milana M. Pantelić ◽  
...  

This paper examines temporal and spatial patterns of annual and seasonal maximum temperatures (Tmax) in Slovenia and their relationship with atmospheric circulation patterns. A significant increase in maximum temperature (Tmax; from 0.3°C to 0.5°C·decade-1) was observed throughout the country at the annual scale in the period 1963–2014. Significant positive trends are observed on all stations in summer (from 0.4°C to 0.7°C·decade-1) and spring (from 0.4°C to 0.6°C·decade-1). The results indicate significant correlations between the mean annual maximum temperature (Tmax) and the East Atlantic Oscillation (EA) (from 0.5 to 0.7), the Arctic Oscillation (AO) (from 0.4 to 0.7) and the Scandinavian Oscillation (SCAND) (from −0.3 to −0.4) throughout the country. A significant EA influence is observed in all seasons, while the AO influence is noticed in winter and spring, SCAND in spring and summer, the North Atlantic Oscillation (NAO) and the Mediterranean Oscillation (MO) in winter, the East Atlantic/Western Russia Oscillation (EA/WR) in summer and the El Nino Southern Oscillation (ENSO) in autumn.


Nature ◽  
2015 ◽  
Vol 522 (7557) ◽  
pp. 465-469 ◽  
Author(s):  
Daniel E. Horton ◽  
Nathaniel C. Johnson ◽  
Deepti Singh ◽  
Daniel L. Swain ◽  
Bala Rajaratnam ◽  
...  

2020 ◽  
Author(s):  
Francisco Javier Acero ◽  
Javier Portero ◽  
José Agustín García

<p>Heat waves are meteorological events exceptionally extremes that are increasing in frequency, duration and intensity. The Iberian Peninsula is characterized in the last decades by an increase in the trend of extreme temperature events and its consequences are important not only for the effects over the population but also for agriculture and biodiversity. The main objective in this study is to analyse future trends over the 21<sup>st</sup> century for extreme temperature using two events: heat waves and warm events. These are defined as the period of at least two consecutive days with temperatures over a certain threshold, the 95th percentile for heat waves and the 75th percentile for warm events. For this purpose, 14 different regionalized dynamic climate projections dataset are used. Firstly, to choose the better climate models, the common period 1961-2000 is used to compare with observational data obtained from SPAIN02 grid dataset. Once the better climate models are selected, trends in both events are analysed for the past (1961-2000) and the future (2011-2099). To estimate trends, Mann-Kendall test and Theil-Sen estimator were applied. Mann-Kendall test returns the significance of the trends for each grid point, while Theil-Sen estimator estimates the value of that trend. Moreover, max-stables processes are used to compare spatial dependence between dynamic projections. The results for the comparison period show that maximum temperature and moderate values of the maximum temperature are increasing smoothly, while low values of maximum temperatures are increasing even faster. This means that the variability of extreme temperature is decreasing, especially in the Mediterranean area of the Iberian Peninsula. For the 21<sup>st</sup> century, results reveal a significant positive trend in low values of the maximum temperatures that increases throughout the century over the whole study area. Warm events show a significant positive trend in frequency and intensity. This trend drastically increases from 2050 onwards.</p>


Sign in / Sign up

Export Citation Format

Share Document