scholarly journals Aharonov–Bohm oscillations in a quasi-ballistic three-dimensional topological insulator nanowire

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Sungjae Cho ◽  
Brian Dellabetta ◽  
Ruidan Zhong ◽  
John Schneeloch ◽  
Tiansheng Liu ◽  
...  
2021 ◽  
Vol 103 (7) ◽  
Author(s):  
Kristof Moors ◽  
Peter Schüffelgen ◽  
Daniel Rosenbach ◽  
Tobias Schmitt ◽  
Thomas Schäpers ◽  
...  

1996 ◽  
Vol 10 (28) ◽  
pp. 1397-1406 ◽  
Author(s):  
AXEL VÖLKER ◽  
PETER KOPIETZ

We use the Lanczos method to calculate the variance σ2(E, ϕ) of the number of energy levels in an energy window of width E below the Fermi energy for noninteracting disordered electrons on a thin three-dimensional ring threaded by an Aharonov–Bohm flux ϕ. We confirm numerically that for small E the flux-dependent part of σ2(E, ϕ) is well described by the Altshuler–Shklovskii-diagram involving two Cooperons. However, in the absence of electron–electron interactions this result cannot be extrapolated to energies E where the energy-dependence of the average density of states becomes significant. We discuss consequences for persistent currents and argue that for the calculation of the difference between the canonical- and grand canonical current it is crucial to take the electron–electron interaction into account.


2021 ◽  
Vol 118 (25) ◽  
pp. 253107
Author(s):  
Jimin Wang ◽  
Alexander Kurzendorfer ◽  
Lin Chen ◽  
Zhiwei Wang ◽  
Yoichi Ando ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Michael Denner ◽  
Anastasiia Skurativska ◽  
Frank Schindler ◽  
Mark H. Fischer ◽  
Ronny Thomale ◽  
...  

AbstractWe introduce the exceptional topological insulator (ETI), a non-Hermitian topological state of matter that features exotic non-Hermitian surface states which can only exist within the three-dimensional topological bulk embedding. We show how this phase can evolve from a Weyl semimetal or Hermitian three-dimensional topological insulator close to criticality when quasiparticles acquire a finite lifetime. The ETI does not require any symmetry to be stabilized. It is characterized by a bulk energy point gap, and exhibits robust surface states that cover the bulk gap as a single sheet of complex eigenvalues or with a single exceptional point. The ETI can be induced universally in gapless solid-state systems, thereby setting a paradigm for non-Hermitian topological matter.


2013 ◽  
Vol 53 (5) ◽  
pp. 416-426 ◽  
Author(s):  
Pavel Exner ◽  
Jiří Lipovský

We discuss resonances for a nonrelativistic and spinless quantum particle confined to a two- or three-dimensional Riemannian manifold to which a finite number of semiinfinite leads is attached. Resolvent and scattering resonances are shown to coincide in this situation. Next we consider the resonances together with embedded eigenvalues and ask about the high-energy asymptotics of such a family. For the case when all the halflines are attached at a single point we prove that all resonances are in the momentum plane confined to a strip parallel to the real axis, in contrast to the analogous asymptotics in some metric quantum graphs; we illustrate this on several simple examples. On the other hand, the resonance behaviour can be influenced by a magnetic field. We provide an example of such a ‘hedgehog’ manifold at which a suitable Aharonov-Bohm flux leads to absence of any true resonance, i.e. that corresponding to a pole outside the real axis.


Sign in / Sign up

Export Citation Format

Share Document