scholarly journals Lifestyle of sponge symbiont phages by host prediction and correlative microscopy

2021 ◽  
Author(s):  
M. T. Jahn ◽  
T. Lachnit ◽  
S. M. Markert ◽  
C. Stigloher ◽  
L. Pita ◽  
...  

AbstractBacteriophages (phages) are ubiquitous elements in nature, but their ecology and role in animals remains little understood. Sponges represent the oldest known extant animal-microbe symbiosis and are associated with dense and diverse microbial consortia. Here we investigate the tripartite interaction between phages, bacterial symbionts, and the sponge host. We combined imaging and bioinformatics to tackle important questions on who the phage hosts are and what the replication mode and spatial distribution within the animal is. This approach led to the discovery of distinct phage-microbe infection networks in sponge versus seawater microbiomes. A new correlative in situ imaging approach (‘PhageFISH-CLEM‘) localised phages within bacterial symbiont cells, but also within phagocytotically active sponge cells. We postulate that the phagocytosis of free virions by sponge cells modulates phage-bacteria ratios and ultimately controls infection dynamics. Prediction of phage replication strategies indicated a distinct pattern, where lysogeny dominates the sponge microbiome, likely fostered by sponge host-mediated virion clearance, while lysis dominates in seawater. Collectively, this work provides new insights into phage ecology within sponges, highlighting the importance of tripartite animal-phage-bacterium interplay in holobiont functioning. We anticipate that our imaging approach will be instrumental to further understanding of viral distribution and cellular association in animal hosts.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wenjun Li ◽  
Xiaofang Li

Abstract Background Mine tailings are hostile environment. It has been well documented that several microbes can inhabit such environment, and metagenomic reconstruction has successfully pinpointed their activities and community structure in acidic tailings environments. We still know little about the microbial metabolic capacities of alkaline sulphidic environment where microbial processes are critically important for the revegetation. Microbial communities therein may not only provide soil functions, but also ameliorate the environment stresses for plants’ survival. Results In this study, we detected a considerable amount of viable bacterial and archaeal cells using fluorescent in situ hybridization in alkaline sulphidic tailings from Mt Isa, Queensland. By taking advantage of high-throughput sequencing and up-to-date metagenomic binning technology, we reconstructed the microbial community structure and potential coupled iron and nitrogen metabolism pathways in the tailings. Assembly of 10 metagenome-assembled genomes (MAGs), with 5 nearly complete, was achieved. From this, detailed insights into the community metabolic capabilities was derived. Dominant microbial species were seen to possess powerful resistance systems for osmotic, metal and oxidative stresses. Additionally, these community members had metabolic capabilities for sulphide oxidation, for causing increased salinity and metal release, and for leading to N depletion. Conclusions Here our results show that a considerable amount of microbial cells inhabit the mine tailings, who possess a variety of genes for stress response. Metabolic reconstruction infers that the microbial consortia may actively accelerate the sulphide weathering and N depletion therein.


2021 ◽  
Author(s):  
Qinggeer BORJIGIN ◽  
Bizhou ZHANG ◽  
Xiaofang Yu ◽  
Julin Gao ◽  
Xin ZHANG ◽  
...  

Abstract A lignocellulolytic microbial consortium holds promise for the in situ biodegradation of crop straw and the comprehensive and effective utilization of agricultural waste. In this study, we applied metagenomics technology to comprehensively explore the metabolic functional potential and taxonomic diversity of the microbial consortia CS (cultured on corn stover) and FP (cultured on filter paper).Analyses of the metagenomics taxonomic affiliation data showed considerable differences in the taxonomic composition and functional profile of the microbial consortia CS and FP. The microbial consortia CS primarily contained members from the genera Pseudomonas, Stenotrophomonas, Achromobacter, Dysgonomonas, Flavobacterium and Sphingobacterium, as well as Cellvibrio, Azospirillum, Pseudomonas, Dysgonomonas and Cellulomonas in FP. The COG and KEGG annotation analyses revealed considerable levels of diversity. Further analysis determined that the CS consortium had an increase in the acid and ester metabolism pathways, while carbohydrate metabolism was enriched in the FP consortium. Furthermore, a comparison against the CAZy database showed that the microbial consortia CS and FP contain a rich diversity of lignocellulose degrading families, in which GH5, GH6, GH9, GH10, GH11, GH26, GH42, and GH43 were enriched in the FP consortium, and GH44, GH28, GH2, and GH29 increased in the CS consortium. The degradative mechanism of lignocellulose metabolism by the two microbial consortia is similar, but the annotation of quantity of genes indicated that they are diverse and vary greatly. The lignocellulolytic microbial consortia cultured under different carbon conditions (CS and FP) differed substantially in their composition of the microbial community at the genus level. The changes in functional diversity were accompanied with variation in the composition of microorganisms, many of which are related to the degradation of lignocellulolytic materials. The genera Pseudomonas, Dysgonomonas and Sphingobacterium in CS and the genera Cellvibrio and Pseudomonas in FP exhibited a much wider distribution of lignocellulose degradative ability.


2016 ◽  
Vol 76 (2) ◽  
pp. 360-366 ◽  
Author(s):  
P. B. Nishiyama ◽  
M. M. R. Vieira ◽  
F. E. Porto ◽  
L. A. Borin ◽  
A. L. B. Portela-Castro ◽  
...  

Abstract The group Incertae sedis within the Characidae family currently includes 88 genera, previously included in the subfamily Tetragonopterinae. Among them is the genus Astyanax comprising a group of species with similar morphology and widely distributed in the Neotropics. Thus, the present study aimed to analyze the karyotype diversity in Astyanax species from different watersheds by conventional Giemsa staining, C-banding and fluorescence in situ hybridization (FISH rDNA 18S) probe.specimens of Astyanax aff. paranae belonging to the “scabripinnis complex”, Astyanax asunsionensis and Astyanax aff. bimaculatus were analyzed”. Two sympatric karyomorphs were observed in Astyanax.aff paranae, one of them having2n=48andthe other one with 2n=50 chromosomes. Other population of this same species also presented 2n=50 chromosomes, but differing in the karyotype formula and with macro supernumerary chromosome found in 100% of the cells in about 80%of females analyzed. Two population of A. asuncionensis and one population of Astyanax. aff. bimaculatus, also showed a diploid number of 50 chromosomes, but also differing in their karyotype formulas. Therefore, A. asuncionensis was also characterized by intraspecific chromosome diversity. The C-banding analysis was able to demonstrate a distinctable to demonstrate a distinct pattern of heterochromatin differing A. asuncionensis from Astyanax aff. paranae and Astyanax aff. bimaculatus. The supernumerary chromosome of Astyanax aff. paranae proved completely heterochromatic. Only Astyanax.aff. bimaculatus multiple showed multiple sites of nucleolar organizing regions. The other species were characterized by having a simple system of NOR. These data contributes to the know ledge of the existing biodiversity in our fish fauna, here highlighted by the inter- and intraspecific chromosomal diversity in the genus Astyanax.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Mohammed Kaplan ◽  
Debnath Ghosal ◽  
Poorna Subramanian ◽  
Catherine M Oikonomou ◽  
Andreas Kjaer ◽  
...  

The bacterial flagellar motor, a cell-envelope-embedded macromolecular machine that functions as a cellular propeller, exhibits significant structural variability between species. Different torque-generating stator modules allow motors to operate in different pH, salt or viscosity levels. How such diversity evolved is unknown. Here, we use electron cryo-tomography to determine the in situ macromolecular structures of three Gammaproteobacteria motors: Legionella pneumophila, Pseudomonas aeruginosa, and Shewanella oneidensis, providing the first views of intact motors with dual stator systems. Complementing our imaging with bioinformatics analysis, we find a correlation between the motor’s stator system and its structural elaboration. Motors with a single H+-driven stator have only the core periplasmic P- and L-rings; those with dual H+-driven stators have an elaborated P-ring; and motors with Na+ or Na+/H+-driven stators have both their P- and L-rings embellished. Our results suggest an evolution of structural elaboration that may have enabled pathogenic bacteria to colonize higher-viscosity environments in animal hosts.


2020 ◽  
Author(s):  
Georgia C Drew ◽  
Giles E Budge ◽  
Crystal L Frost ◽  
Peter Neumann ◽  
Stefanos Siozios ◽  
...  

AbstractA dynamic continuum exists from free-living environmental microbes to strict host associated symbionts that are vertically inherited. However, knowledge of the forces that drive transitions in the modes by which symbioses form is lacking. Arsenophonus is a diverse clade of bacterial symbionts, comprising reproductive parasites to coevolving obligate mutualists, in which the predominant mode of transmission is vertical. We describe a symbiosis between a member of the genus Arsenophonus and the Western honey bee. We then present multiple lines of evidence that this symbiont deviates from a heritable model of transmission. Field sampling uncovered marked spatial and seasonal dynamics in symbiont prevalence, and rapid infection loss events were observed in field colonies and individuals in the laboratory. Fluorescent in-situ hybridization showed Arsenophonus localised in the gut, and detection of the bacterium was rare in screens of early honey bee life stages. We directly show horizontal transmission of Arsenophonus between bees under varying social conditions. We conclude that honey bees acquire Arsenophonus through a combination of environmental exposure and social contacts. Together these findings uncover a key link in the Arsenophonus clades trajectory from free-living ancestral life to obligate mutualism, and provide a foundation for studying transitions in symbiotic lifestyle.


PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e59927 ◽  
Author(s):  
Joseph P. Peacock ◽  
Jessica K. Cole ◽  
Senthil K. Murugapiran ◽  
Jeremy A. Dodsworth ◽  
Jenny C. Fisher ◽  
...  

2015 ◽  
Vol 8 (4) ◽  
pp. 159-167
Author(s):  
Quentin Le Trequesser ◽  
Gladys Saez ◽  
Marina Simon ◽  
Guillaume Devès ◽  
Laurent Daudin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document