mine tailings
Recently Published Documents


TOTAL DOCUMENTS

2155
(FIVE YEARS 564)

H-INDEX

74
(FIVE YEARS 11)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 179
Author(s):  
Meryem El Berkaoui ◽  
Mariam El Adnani ◽  
Rachid Hakkou ◽  
Ahmed Ouhammou ◽  
Najib Bendaou ◽  
...  

The abandoned Kettara pyrrhotite mine (Marrakech region, Morocco) is a real source of acid mine drainage (AMD) and heavy metal pollution from previous mining operations—which has spread, particularly because of wind erosion. A store-and-release cover system made of phosphate wastes was built on the site for preventing AMD. To ensure the integrity of this cover and its durability, it is desirable to revegetate it (phytostabilization) with plants adapted to the edaphoclimatic conditions of the region. In this paper, a study was carried out on the spontaneous vegetation around the phosphate cover in order to consider the selection of plants to promote the stabilization of the Kettara mine tailings pond. Nine species of native plants with their rhizospheric soils growing in agricultural soils and tailings from the Kettara mine were collected, and metals (As, Cd, Co, Cu, Pb, Zn, Ni, Cr) were analyzed. The soil analysis showed that the tailings contained high concentrations of Cu (177.64 mg/kg) and Pb (116.80 mg/kg) and that the agricultural soil contained high concentrations of As (25.07 mg/kg) and Cu (251.96 mg/kg) exceeding the toxicity level (Cu > 100 mg/kg, Pb > 100 mg/kg, As > 20 mg/kg). The plant analysis showed low trace metal accumulation in Scolymus hispanicus, Festuca ovina, Cleome brachycarpa, Carlina involucrata and Peganum harmala. These species had a bioconcentration factor (BCF) greater than 1 and a translocation factor (TF) less than 1, demonstrating a high tolerance to trace metals. Therefore, they are good candidates for use in the phytoremediation of the Kettara mine tailings. These species could also potentially be used for the phytostabilization of the phosphate waste cover of the Kettara mine, thus completing the rehabilitation process of this area.


Author(s):  
Romain Nandillon ◽  
Manhattan Lebrun ◽  
Florie Miard ◽  
Marie Gaillard ◽  
Stéphane Sabatier ◽  
...  

Author(s):  
M. Vinoth ◽  
M.S. Aswathy

Based on the available literature this paper evaluates the environmental effects of copper mine tailings (CMT) when used as structural fill material in various geotechnical applications. Leaching of heavy metals from the CMT is considered as the vital factor hindering its wider acceptability among researchers and engineers. Therefore, apart from physical and chemical characteristics, due consideration was given to assess the leachability of CMT when used as structural fill in various geotechnical applications like subgrade, embankment, fill and reclamation. From the literature review, it was found that CMT seems to be satisfying the criteria meant for structural fill. Leachability test results show that only a very few elements concentration exceeded the limits in un-stabilized form. Stabilized CMT performed better by bringing down the concentration well below the permissible limits in all the application types. This encourages the utilization of CMT in structural fills and shows that environmental impacts are within the limits prescribed in standards.


2022 ◽  
Vol 175 ◽  
pp. 107303
Author(s):  
Foojan Shafaei ◽  
Faramarz Doulati Ardejani ◽  
Abbas Bahroudi ◽  
Mahdi Hoseini ◽  
Mohammadjavad Khakpour

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 202
Author(s):  
Dumitru Doru Burduhos Nergis ◽  
Petrica Vizureanu ◽  
Andrei Victor Sandu ◽  
Diana Petronela Burduhos Nergis ◽  
Costica Bejinariu

Coal ash-based geopolymers with mine tailings addition activated with phosphate acid were synthesized for the first time at room temperature. In addition, three types of aluminosilicate sources were used as single raw materials or in a 1/1 wt. ratio to obtain five types of geopolymers activated with H3PO4. The thermal behaviour of the obtained geopolymers was studied between room temperature and 600 °C by Thermogravimetry-Differential Thermal Analysis (TG-DTA) and the phase composition after 28 days of curing at room temperature was analysed by X-ray diffraction (XRD). During heating, the acid-activated geopolymers exhibited similar behaviour to alkali-activated geopolymers. All of the samples showed endothermic peaks up to 300 °C due to water evaporation, while the samples with mine tailings showed two significant exothermic peaks above 400 °C due to oxidation reactions. The phase analysis confirmed the dissolution of the aluminosilicate sources in the presence of H3PO4 by significant changes in the XRD patterns of the raw materials and by the broadening of the peaks because of typically amorphous silicophosphate (Si–P), aluminophosphate (Al–P) or silico-alumino-phosphate (Si–Al–P) formation. The phases resulted from geopolymerisation are berlinite (AlPO4), brushite (CaHPO4∙2H2O), anhydrite (CaSO4) or ettringite as AFt and AFm phases.


Sign in / Sign up

Export Citation Format

Share Document