scholarly journals Insulated conjugated bimetallopolymer with sigmoidal response by dual self-controlling system as a biomimetic material

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroshi Masai ◽  
Takuya Yokoyama ◽  
Hiromichi V. Miyagishi ◽  
Maning Liu ◽  
Yasuhiro Tachibana ◽  
...  
2017 ◽  
Vol 137 (8) ◽  
pp. 1001-1008
Author(s):  
Tadayoshi Kosaka ◽  
Kazuhiko Koyanagi ◽  
Yasutaka Satake ◽  
Isao Kobayashi ◽  
Nobuhiro Matsudaira ◽  
...  

2017 ◽  
Vol 4 (4) ◽  
pp. 20
Author(s):  
KAVITHA T. ◽  
PREETHI D. LAVANYA ◽  
SARANYA S. ◽  
ANCY EVERT P.M. JONAH ◽  
◽  
...  

2018 ◽  
Vol 25 (1) ◽  
pp. 21-30
Author(s):  
Rokhana Faizah ◽  
Sri Wening ◽  
Abdul Razak Purba

Information of legitimacy of oil palm progenies is important to guaranty the quality and to control commercial seeds procedures. A true and legitimate cross will produce progeny which has a combination of their parent's allele. The information could be obtained early in the nursery stage through DNA fingerprinting analysis. Simple Sequence Repeats (SSR) is one of DNA markers used for DNA fingerprinting, since the marker system has advantages to acquire information of allele per individual in population and efficiency diverse allele of progeny and their parents. The aim of the research is to obtain legitimacy of 12 progenies analyzing in the oil palm nursery stage. Thirteen SSR markers were used to analyze 12 crossings number of oil palm. The genotypes data by alleles of SSR inferred and quantified using Gene Marker® Software version 2.4.0 Soft Genetics® LLC and analyzed based on Mendel's Law of Segregation. The result showed based on heredity pattern of progeny and their parent's allele that progenies H were indicated genetically derived from their known parents while progenies from A and G indicated as illegitimate crossing. Probability value for legitimacy of progenies of 9 other crosses has 0.031 and 0.5. Legitimacy analysis of progeny using SSR markers could be used to control the quality of crossing material and earlier selection in the oil palm nursery.


Author(s):  
F Sh Khan ◽  
M Sh Hossen ◽  
N Islam ◽  
Md Kosar ◽  
M R Hasan
Keyword(s):  

2021 ◽  
Vol 1125 (1) ◽  
pp. 012073
Author(s):  
Haryanto ◽  
L Anifah ◽  
D Rahmawati ◽  
A K Sahputra ◽  
D T Laksono

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 915
Author(s):  
Gözde Dursun ◽  
Muhammad Umer ◽  
Bernd Markert ◽  
Marcus Stoffel

(1) Background: Bioreactors mimic the natural environment of cells and tissues by providing a controlled micro-environment. However, their design is often expensive and complex. Herein, we have introduced the development of a low-cost compression bioreactor which enables the application of different mechanical stimulation regimes to in vitro tissue models and provides the information of applied stress and strain in real-time. (2) Methods: The compression bioreactor is designed using a mini-computer called Raspberry Pi, which is programmed to apply compressive deformation at various strains and frequencies, as well as to measure the force applied to the tissue constructs. Besides this, we have developed a mobile application connected to the bioreactor software to monitor, command, and control experiments via mobile devices. (3) Results: Cell viability results indicate that the newly designed compression bioreactor supports cell cultivation in a sterile environment without any contamination. The developed bioreactor software plots the experimental data of dynamic mechanical loading in a long-term manner, as well as stores them for further data processing. Following in vitro uniaxial compression conditioning of 3D in vitro cartilage models, chondrocyte cell migration was altered positively compared to static cultures. (4) Conclusion: The developed compression bioreactor can support the in vitro tissue model cultivation and monitor the experimental information with a low-cost controlling system and via mobile application. The highly customizable mold inside the cultivation chamber is a significant approach to solve the limited customization capability of the traditional bioreactors. Most importantly, the compression bioreactor prevents operator- and system-dependent variability between experiments by enabling a dynamic culture in a large volume for multiple numbers of in vitro tissue constructs.


2021 ◽  
Vol 1937 (1) ◽  
pp. 012046
Author(s):  
Abinya Chandramohan ◽  
Anju Sasi ◽  
Suresh Venkatesh ◽  
A Mohanarathinam

Sign in / Sign up

Export Citation Format

Share Document