scholarly journals Control of quantum electrodynamical processes by shaping electron wavepackets

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liang Jie Wong ◽  
Nicholas Rivera ◽  
Chitraang Murdia ◽  
Thomas Christensen ◽  
John D. Joannopoulos ◽  
...  

AbstractFundamental quantum electrodynamical (QED) processes, such as spontaneous emission and electron-photon scattering, encompass phenomena that underlie much of modern science and technology. Conventionally, calculations in QED and other field theories treat incoming particles as single-momentum states, omitting the possibility that coherent superposition states, i.e., shaped wavepackets, can alter fundamental scattering processes. Here, we show that free electron waveshaping can be used to design interferences between two or more pathways in a QED process, enabling precise control over the rate of that process. As an example, we show that free electron waveshaping modifies both spatial and spectral characteristics of bremsstrahlung emission, leading for instance to enhancements in directionality and monochromaticity. The ability to tailor general QED processes opens up additional avenues of control in phenomena ranging from optical excitation (e.g., plasmon and phonon emission) in electron microscopy to free electron lasing in the quantum regime.

2017 ◽  
Vol 923 ◽  
pp. 475-490 ◽  
Author(s):  
Y. Özgüven ◽  
A.A. Billur ◽  
S.C. İnan ◽  
M.K. Bahar ◽  
M. Köksal

2013 ◽  
Vol 31 (2) ◽  
pp. 195-201 ◽  
Author(s):  
A. Bartnik ◽  
R. Fedosejevs ◽  
P. Wachulak ◽  
H. Fiedorowicz ◽  
C. Serbanescu ◽  
...  

AbstractIn this work, a laser-produced plasma extreme ultraviolet source and a free electron laser were used to create Ne photo-ionized plasmas. In both cases, a radiation beam was focused onto a gas stream injected into a vacuum chamber synchronously with the radiation pulse. Extreme ultraviolet radiation from the plasma spanned a wide spectral range with pronounced maximum centered at λ = 11 ± 1 nm while the free electron laser pulses were emitted at a wavelength of 32 nm. The power density of the focused plasma radiation was approximately 2 × 107 W/cm2 and was seven orders of magnitude lower compared with the focused free electron laser beam. Radiation fluences in both experimental conditions were comparable. Despite quite different spectral characteristics and extremely different power densities, emission spectra of both photo-ionized plasmas consist of the same spectral lines within a wavelength range of 20 to 50 nm, however, with different relative intensities of the corresponding lines. The dominating spectral lines originated from singly charged ions (Ne II); however, Ne III lines were also detected. Additionally, computer simulations of the emission spectra, obtained for photo-ionized plasmas, driven by the plasma extreme ultraviolet source, were performed. The corresponding measured and calculated spectra are presented. An electron temperature and ionic composition were estimated. Differences between the experimental spectra, obtained for both irradiation conditions, were analyzed. The differences were attributed mainly to different energies of driving photons.


Chemosensors ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 46 ◽  
Author(s):  
Ishtiaq Ahmed ◽  
Zain Akram ◽  
Mohammed Bule ◽  
Hafiz Iqbal

A micro-level technique so-called “microfluidic technology or simply microfluidic” has gained a special place as a powerful tool in bioengineering and biomedical engineering research due to its core advantages in modern science and engineering. Microfluidic technology has played a substantial role in numerous applications with special reference to bioscience, biomedical and biotechnological research. It has facilitated noteworthy development in various sectors of bio-research and upsurges the efficacy of research at the molecular level, in recent years. Microfluidic technology can manipulate sample volumes with precise control outside cellular microenvironment, at micro-level. Thus, enable the reduction of discrepancies between in vivo and in vitro environments and reduce the overall reaction time and cost. In this review, we discuss various integrations of microfluidic technologies into biotechnology and its paradigmatic significance in bio-research, supporting mechanical and chemical in vitro cellular microenvironment. Furthermore, specific innovations related to the application of microfluidics to advance microbial life, solitary and co-cultures along with a multiple-type cell culturing, cellular communications, cellular interactions, and population dynamics are also discussed.


1987 ◽  
Author(s):  
Avner Amir ◽  
Luis R. Elias ◽  
R. James Hu ◽  
Gerald Ramian

Sign in / Sign up

Export Citation Format

Share Document