scholarly journals Temporal stability of stimulus representation increases along rodent visual cortical hierarchies

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eugenio Piasini ◽  
Liviu Soltuzu ◽  
Paolo Muratore ◽  
Riccardo Caramellino ◽  
Kasper Vinken ◽  
...  

AbstractCortical representations of brief, static stimuli become more invariant to identity-preserving transformations along the ventral stream. Likewise, increased invariance along the visual hierarchy should imply greater temporal persistence of temporally structured dynamic stimuli, possibly complemented by temporal broadening of neuronal receptive fields. However, such stimuli could engage adaptive and predictive processes, whose impact on neural coding dynamics is unknown. By probing the rat analog of the ventral stream with movies, we uncovered a hierarchy of temporal scales, with deeper areas encoding visual information more persistently. Furthermore, the impact of intrinsic dynamics on the stability of stimulus representations grew gradually along the hierarchy. A database of recordings from mouse showed similar trends, additionally revealing dependencies on the behavioral state. Overall, these findings show that visual representations become progressively more stable along rodent visual processing hierarchies, with an important contribution provided by intrinsic processing.

2019 ◽  
Author(s):  
Eugenio Piasini ◽  
Liviu Soltuzu ◽  
Paolo Muratore ◽  
Riccardo Caramellino ◽  
Kasper Vinken ◽  
...  

SummaryAlong the ventral stream, cortical representations of brief, static stimuli become gradually more invariant to identity-preserving transformations. In the presence of long, temporally structured dynamic stimuli, higher invariance should imply temporally persistent representations at the top of this functional hierarchy. However, such stimuli could engage adaptive and predictive processes, whose impact on neural coding dynamics is unknown. By probing the rat analogue of the ventral stream with movies, we uncovered a hierarchy of temporal scales, with deeper areas encoding visual information more persistently. Furthermore, the impact of intrinsic dynamics on the stability of stimulus representations gradually grew along the hierarchy. Analysis of a large dataset of recordings from the mouse visual hierarchy yielded similar trends, revealing also their dependence on the behavioral state of the animal. Overall, these findings show that visual representations become progressively more stable along rodent visual processing hierarchies, with an important contribution provided by intrinsic processing.


2013 ◽  
Vol 21 (6) ◽  
pp. 1258-1265 ◽  
Author(s):  
Renata Bigatti Bellizzotti Pavan ◽  
Kátia Melissa Padilha ◽  
Simey de Lima Lopes Rodrigues ◽  
Roberta Cunha Matheus Rodrigues ◽  
Maria Cecília Jayme Bueno Gallani

OBJECTIVE: to evaluate the feasibility, acceptability, the ceiling and floor effects and the reliability of the Instrument to Measure the Impact of Coronary Disease on Patient's Daily Life (IDCV) when applied to hypertensive patients. METHOD: one hundred and thirty seven hypertensive outpatients were interviewed, using questionnaires to collect sociodemographic and clinical data, followed by the IDCV. Reliability was assessed according to the temporal stability and internal consistency criteria. RESULTS: the IDCV was applied in 8.0 (±3.0) minutes with 100% of the items answered. A ceiling effect of 31.4% was observed in the domain Adjustment to the Disease. The stability measure was observed for the total score and for all domains. There was evidence of internal consistency of the total IDCV (α=0.83) and the domains Physical Impact of the Disease - Symptoms (α=0.78) and Social and Emotional Impact of the Disease (α=0.74). CONCLUSION: the IDCV is an instrument of easy use and its reliability among hypertensive patients is evidenced. The domain Adjustment to the Disease, however, should be reviewed in further studies.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jen-Chun Hsiang ◽  
Keith P Johnson ◽  
Linda Madisen ◽  
Hongkui Zeng ◽  
Daniel Kerschensteiner

Neurons receive synaptic inputs on extensive neurite arbors. How information is organized across arbors and how local processing in neurites contributes to circuit function is mostly unknown. Here, we used two-photon Ca2+ imaging to study visual processing in VGluT3-expressing amacrine cells (VG3-ACs) in the mouse retina. Contrast preferences (ON vs. OFF) varied across VG3-AC arbors depending on the laminar position of neurites, with ON responses preferring larger stimuli than OFF responses. Although arbors of neighboring cells overlap extensively, imaging population activity revealed continuous topographic maps of visual space in the VG3-AC plexus. All VG3-AC neurites responded strongly to object motion, but remained silent during global image motion. Thus, VG3-AC arbors limit vertical and lateral integration of contrast and location information, respectively. We propose that this local processing enables the dense VG3-AC plexus to contribute precise object motion signals to diverse targets without distorting target-specific contrast preferences and spatial receptive fields.


2018 ◽  
Author(s):  
Karolina Socha ◽  
Matt Whiteway ◽  
Daniel A. Butts ◽  
Vincent Bonin

SummaryVisual motion is a ubiquitous component of animals’ sensory experience and its encoding is critical for navigation and movement. Yet its impact on behavior and neural coding is not well understood. Combining pupillometry with cellular calcium imaging measurements of thalamocortical axons in awake behaving mice, we examined the impact of arousal and behavioral state on encoding of visual motion in the visual thalamus. We discovered that back-to-front visual motions elicits a robust behavioral response that shapes tunings of visual thalamic responses. Consistent with an arousal mechanism, the effects were pronounced during stillness and weak or absent during locomotor activity and under anesthesia. The impact on neuronal tuning was specific, biasing population response patterns in favor of back-to-front motion. The potent influence of visual motion on behavioral state dynamically affect sensory coding at early visual processing stages. Further research is required to reveal the circuitry and function of this novel mechanism.


2019 ◽  
Author(s):  
Ali Pournaghdali ◽  
Bennett L Schwartz

Studies utilizing continuous flash suppression (CFS) provide valuable information regarding conscious and nonconscious perception. There are, however, crucial unanswered questions regarding the mechanisms of suppression and the level of visual processing in the absence of consciousness with CFS. Research suggests that the answers to these questions depend on the experimental configuration and how we assess consciousness in these studies. The aim of this review is to evaluate the impact of different experimental configurations and the assessment of consciousness on the results of the previous CFS studies. We review studies that evaluated the influence of different experimental configuration on the depth of suppression with CFS and discuss how different assessments of consciousness may impact the results of CFS studies. Finally, we review behavioral and brain recording studies of CFS. In conclusion, previous studies provide evidence for survival of low-level visual information and complete impairment of high-level visual information under the influence of CFS. That is, studies suggest that nonconscious perception of lower-level visual information happens with CFS but there is no evidence for nonconscious highlevel recognition with CFS.


Author(s):  
Lucas Battich ◽  
Isabelle Garzorz ◽  
Basil Wahn ◽  
Ophelia Deroy

AbstractHumans coordinate their focus of attention with others, either by gaze following or prior agreement. Though the effects of joint attention on perceptual and cognitive processing tend to be examined in purely visual environments, they should also show in multisensory settings. According to a prevalent hypothesis, joint attention enhances visual information encoding and processing, over and above individual attention. If two individuals jointly attend to the visual components of an audiovisual event, this should affect the weighing of visual information during multisensory integration. We tested this prediction in this preregistered study, using the well-documented sound-induced flash illusions, where the integration of an incongruent number of visual flashes and auditory beeps results in a single flash being seen as two (fission illusion) and two flashes as one (fusion illusion). Participants were asked to count flashes either alone or together, and expected to be less prone to both fission and fusion illusions when they jointly attended to the visual targets. However, illusions were as frequent when people attended to the flashes alone or with someone else, even though they responded faster during joint attention. Our results reveal the limitations of the theory that joint attention enhances visual processing as it does not affect temporal audiovisual integration.


2020 ◽  
Author(s):  
Kion Fallah ◽  
Adam A. Willats ◽  
Ninghao Liu ◽  
Christopher J. Rozell

AbstractSparse coding is an important method for unsupervised learning of task-independent features in theoretical neuroscience models of neural coding. While a number of algorithms exist to learn these representations from the statistics of a dataset, they largely ignore the information bottlenecks present in fiber pathways connecting cortical areas. For example, the visual pathway has many fewer neurons transmitting visual information to cortex than the number of photoreceptors. Both empirical and analytic results have recently shown that sparse representations can be learned effectively after performing dimensionality reduction with randomized linear operators, producing latent coefficients that preserve information. Unfortunately, current proposals for sparse coding in the compressed space require a centralized compression process (i.e., dense random matrix) that is biologically unrealistic due to local wiring constraints observed in neural circuits. The main contribution of this paper is to leverage recent results on structured random matrices to propose a theoretical neuroscience model of randomized projections for communication between cortical areas that is consistent with the local wiring constraints observed in neuroanatomy. We show analytically and empirically that unsupervised learning of sparse representations can be performed in the compressed space despite significant local wiring constraints in compression matrices of varying forms (corresponding to different local wiring patterns). Our analysis verifies that even with significant local wiring constraints, the learned representations remain qualitatively similar, have similar quantitative performance in both training and generalization error, and are consistent across many measures with measured macaque V1 receptive fields.


2000 ◽  
Vol 17 (1) ◽  
pp. 77-89 ◽  
Author(s):  
ROSARIO M. BALBOA ◽  
NORBERTO M. GRZYWACZ

Lateral inhibition is one of the first and most important stages of visual processing. There are at least four theories related to information theory in the literature for the role of early retinal lateral inhibition. They are based on the spatial redundancy in natural images and the advantage of removing this redundancy from the visual code. Here, we contrast these theories with data from the retina's outer plexiform layer. The horizontal cells' lateral-inhibition extent displays a bell-shape behavior as function of background luminance, whereas all the theories show a fall as luminance increases. It is remarkable that different theories predict the same luminance behavior, explaining “half” of the biological data. We argue that the main reason is how these theories deal with photon-absorption noise. At dim light levels, for which this noise is relatively large, large receptive fields would increase the signal-to-noise ratio through averaging. Unfortunately, such an increase at low luminance levels may smooth out basic visual information of natural images. To explain the biological behavior, we describe an alternate hypothesis, which proposes that the role of early visual lateral inhibition is to deal with noise without missing relevant clues from the visual world, most prominently, the occlusion boundaries between objects.


2013 ◽  
Vol 280 (1768) ◽  
pp. 20131548 ◽  
Author(s):  
Patrick A. Venail ◽  
Markos A. Alexandrou ◽  
Todd H. Oakley ◽  
Bradley J. Cardinale

The impact of biodiversity on the stability of ecological communities has been debated among biologists for more than a century. Recently summarized empirical evidence suggests that biodiversity tends to enhance the temporal stability of community-level properties such as biomass; however, the underlying mechanisms driving this relationship remain poorly understood. Here, we report the results of a microcosm study in which we used simplified systems of freshwater microalgae to explore how the phylogenetic relatedness of species influences the temporal stability of community biomass by altering the nature of their competitive interactions. We show that combinations of two species that are more evolutionarily divergent tend to have lower temporal stability of biomass. In part, this is due to negative ‘selection effects’ in which bicultures composed of distantly related species are more likely to contain strong competitors that achieve low biomass. In addition, bicultures of distantly related species had on average weaker competitive interactions, which reduced compensatory dynamics and decreased the stability of community biomass. Our results demonstrate that evolutionary history plays a key role in controlling the mechanisms, which give rise to diversity–stability relationships. As such, patterns of shared ancestry may help us predict the ecosystem-level consequences of biodiversity loss.


2021 ◽  
Author(s):  
Esmaeil Farhang ◽  
Ramin Toosi ◽  
Behnam Karami ◽  
Roxana Koushki ◽  
Ehsan Rezayat ◽  
...  

ABSTRACTTo expand our knowledge about the object recognition, it is critical to understand the role of spatial frequency (SF) in an object representation that occurs in the inferior temporal (IT) cortex at the final stage of processing the visual information across the ventral visual pathway. Object categories are being recognized hierarchically in at least three levels of abstraction: superordinate (e.g., animal), mid-level (e.g., human face), and subordinate (e.g., face identity). Psychophysical studies have shown rapid access to mid-level category information and low SF (LSF) contents. Although the hierarchical representation of categories has been shown to exist inside the IT cortex, the impact of SF on the multi-level category processing is poorly understood. To gain a deeper understanding of the neural basis of the interaction between SF and category representations at multiple levels, we examined the neural responses within the IT cortex of macaque monkeys viewing several SF-filtered objects. Each stimulus could be either intact or bandpass filtered into either the LSF (coarse shape information) or high SF (HSF) (fine shape information) bands. We found that in both High- and Low-SF contents, the advantage of mid-level representation has not been violated. This evidence suggests that mid-level category boundary maps are strongly represented in the IT cortex and remain unaffected with respect to any changes in the frequency content of stimuli. Our observations indicate the necessity of the HSF content for the superordinate category representation inside the IT cortex. In addition, our findings reveal that the representation of global category information is more dependent on the HSF than the LSF content. Furthermore, the lack of subordinate representation in both LSF and HSF filtered stimuli compared to the intact stimuli provide strong evidence that all SF contents are necessary for fine category visual processing.


Sign in / Sign up

Export Citation Format

Share Document