scholarly journals Reactive astrocytes acquire neuroprotective as well as deleterious signatures in response to Tau and Aß pathology

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zoeb Jiwaji ◽  
Sachin S. Tiwari ◽  
Rolando X. Avilés-Reyes ◽  
Monique Hooley ◽  
David Hampton ◽  
...  

AbstractAlzheimer’s disease (AD) alters astrocytes, but the effect of Aß and Tau pathology is poorly understood. TRAP-seq translatome analysis of astrocytes in APP/PS1 ß-amyloidopathy and MAPTP301S tauopathy mice revealed that only Aß influenced expression of AD risk genes, but both pathologies precociously induced age-dependent changes, and had distinct but overlapping signatures found in human post-mortem AD astrocytes. Both Aß and Tau pathology induced an astrocyte signature involving repression of bioenergetic and translation machinery, and induction of inflammation pathways plus protein degradation/proteostasis genes, the latter enriched in targets of inflammatory mediator Spi1 and stress-activated cytoprotective Nrf2. Astrocyte-specific Nrf2 expression induced a reactive phenotype which recapitulated elements of this proteostasis signature, reduced Aß deposition and phospho-tau accumulation in their respective models, and rescued brain-wide transcriptional deregulation, cellular pathology, neurodegeneration and behavioural/cognitive deficits. Thus, Aß and Tau induce overlapping astrocyte profiles associated with both deleterious and adaptive-protective signals, the latter of which can slow patho-progression.

2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Anastasia Noël ◽  
Bénédicte Foveau ◽  
Andréa C. LeBlanc

AbstractActive Caspase-6 (Casp6) and Tau cleaved by Casp6 at amino acids 402 (Tau∆D402) and 421 (Tau∆D421) are present in early Alzheimer disease intraneuronal neurofibrillary tangles, which are made primarily of filamentous Tau aggregates. To assess whether Casp6 cleavage of Tau contributes to Tau pathology and Casp6-mediated age-dependent cognitive impairment, we generated transgenic knock-in mouse models that conditionally express full-length human Tau (hTau) 0N4R only (CTO) or together with human Casp6 (hCasp6) (CTC). Region-specific hippocampal and cortical hCasp6 and hTau expression were confirmed with western blot and immunohistochemistry in 2–25-month-old brains. Casp6 activity was confirmed with Tau∆D421 and Tubulin cleaved by Casp6 immunopositivity in 3–25-month-old CTC, but not in CTO, brains. Immunoprecipitated Tau∆D402 was detected in both CTC and CTO brains, but was more abundant in CTC brains. Intraneuronal hippocampal Tau hyperphosphorylation at S202/T205, S422, and T231, and Tau conformational change were absent in both CTC and CTO brains. A slight accumulation of Tau phosphorylated at S396/404 and S202 was observed in Cornu Ammonis 1 (CA1) hippocampal neuron soma of CTC compared to CTO brains. Eighteen-month-old CTC brains showed rare argentophilic deposits that increased by 25 months, whereas CTO brains only displayed them sparsely at 25 months. Tau microtubule binding was equivalent in CTC and CTO hippocampi. Episodic and spatial memory measured with novel object recognition and Barnes maze, respectively, remained normal in 3–25-month-old CTC and CTO mice, in contrast to previously observed impairments in ACL mice expressing equivalent levels of hCasp6 only. Consistently, the CTC and CTO hippocampal CA1 region displayed equivalent dendritic spine density and no glial inflammation. Together, these results reveal that active hCasp6 co-expression with hTau generates Tau cleavage and rare age-dependent argentophilic deposits but fails to induce cognitive deficits, neuroinflammation, and Tau pathology.


2019 ◽  
Vol 16 (8) ◽  
pp. 710-722 ◽  
Author(s):  
Xiao-Ying Sun ◽  
Quan-Xiu Dong ◽  
Jie Zhu ◽  
Xun Sun ◽  
Li-Fan Zhang ◽  
...  

Background: Alzheimer’s Disease (AD) is characterized by the presence of extracellular amyloid-β (Aβ) plaques and intraneuronal neurofibrillary tangles assembled by the microtubuleassociated protein tau. Increasing evidence demonstrated that tau pathology played an important role in AD progression. Resveratrol (RSV) has previously proved to exert neuroprotective effect against AD by inhibiting Aβ generation and Aβ-induced neurocytotoxicity, while its effect on tau pathology is still unknown. Method: The effect of RSV on tau aggregation was measured by Thioflavin T fluorescence and Transmission electron microscope imaging. The effect of RSV on tau oligomer-induced cytotoxicity was assessed by MTT assay and the uptake of extracellular tau by N2a cells was determined by immunocytochemistry. 6-month-old male PS19 mice were treated with RSV or vehicle by oral administration (gavage) once a day for 5 weeks. The cognitive performance was determined using Morris water maze test, object recognition test and Y-maze test. The levels of phosphorylated-tau, gliosis, proinflammatory cytokines such as TNF-α and IL-1β, and synaptic proteins including synaptophysin and PSD95 in the brains of the mice were evaluated by immunoblotting, immunostaining and ELISA, respectively. Results: RSV significantly inhibited tau aggregation and tau oligomer-induced cytotoxicity, and blocked the uptake of extracellular tau oligomers by N2a cells. When applied to PS19 mice, RSV treatment effectively rescued cognitive deficits, reducing the levels of phosphorylated tau, neuroinflammation and synapse loss in the brains of mice. Conclusion: These findings suggest that RSV has promising therapeutic potential for AD and other tauopathies.


Author(s):  
Nina Sophia Mahlke ◽  
Silvia Renhart ◽  
Dorothea Talaa ◽  
Alexandra Reckert ◽  
Stefanie Ritz-Timme

AbstractAge at death estimation in cases of human skeletal finds is an important task in forensic medicine as well as in anthropology. In forensic medicine, methods based on “molecular clocks” in dental tissues and bone play an increasing role. The question, whether these methods are applicable also in cases with post-depositional intervals far beyond the forensically relevant period, was investigated for two “protein clocks”, the accumulation of D-aspartic acid (D-Asp) and the accumulation of pentosidine (Pen) in dentine. Eight teeth of skeletons from different burial sites in Austria and with post-depositional intervals between c. 1216 and c. 8775 years were analysed. The results of age at death estimation based on D-Asp and Pen in dentine were compared to that derived from a classical morphological examination. Age at death estimation based on D-Asp resulted consistently in false high values. This finding can be explained by a post-mortem accumulation of D-Asp that may be enhanced by protein degradation. In contrast, the Pen-based age estimates fitted well with the morphological age diagnoses. The described effect of post-mortem protein degradation is negligible in forensically relevant time horizons, but not for post-depositional intervals of thousands of years. That means that the “D-Asp clock” loses its functionality with increasing post-depositional intervals, whereas Pen seems to be very stable. The “Pen-clock” may have the potential to become an interesting supplement to the existing repertoire of methods even in cases with extremely long post-depositional intervals. Further investigations have to test this hypothesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Boris Guennewig ◽  
Julia Lim ◽  
Lee Marshall ◽  
Andrew N. McCorkindale ◽  
Patrick J. Paasila ◽  
...  

AbstractTau pathology in Alzheimer’s disease (AD) spreads in a predictable pattern that corresponds with disease symptoms and severity. At post-mortem there are cortical regions that range from mildly to severely affected by tau pathology and neuronal loss. A comparison of the molecular signatures of these differentially affected areas within cases and between cases and controls may allow the temporal modelling of disease progression. Here we used RNA sequencing to explore differential gene expression in the mildly affected primary visual cortex and moderately affected precuneus of ten age-, gender- and RNA quality-matched post-mortem brains from AD patients and healthy controls. The two regions in AD cases had similar transcriptomic signatures but there were broader abnormalities in the precuneus consistent with the greater tau load. Both regions were characterised by upregulation of immune-related genes such as those encoding triggering receptor expressed on myeloid cells 2 and membrane spanning 4-domains A6A and milder changes in insulin/IGF1 signalling. The precuneus in AD was also characterised by changes in vesicle secretion and downregulation of the interneuronal subtype marker, somatostatin. The ‘early’ AD transcriptome is characterised by perturbations in synaptic vesicle secretion on a background of neuroimmune dysfunction. In particular, the synaptic deficits that characterise AD may begin with the somatostatin division of inhibitory neurotransmission.


2017 ◽  
Vol 114 (36) ◽  
pp. 9707-9712 ◽  
Author(s):  
Lindsey B. Shelton ◽  
Jeremy D. Baker ◽  
Dali Zheng ◽  
Leia E. Sullivan ◽  
Parth K. Solanki ◽  
...  

The microtubule-associated protein tau (MAPT, tau) forms neurotoxic aggregates that promote cognitive deficits in tauopathies, the most common of which is Alzheimer’s disease (AD). The 90-kDa heat shock protein (Hsp90) chaperone system affects the accumulation of these toxic tau species, which can be modulated with Hsp90 inhibitors. However, many Hsp90 inhibitors are not blood–brain barrier-permeable, and several present associated toxicities. Here, we find that the cochaperone, activator of Hsp90 ATPase homolog 1 (Aha1), dramatically increased the production of aggregated tau. Treatment with an Aha1 inhibitor, KU-177, dramatically reduced the accumulation of insoluble tau. Aha1 colocalized with tau pathology in human brain tissue, and this association positively correlated with AD progression. Aha1 overexpression in the rTg4510 tau transgenic mouse model promoted insoluble and oligomeric tau accumulation leading to a physiological deficit in cognitive function. Overall, these data demonstrate that Aha1 contributes to tau fibril formation and neurotoxicity through Hsp90. This suggests that therapeutics targeting Aha1 may reduce toxic tau oligomers and slow or prevent neurodegenerative disease progression.


2019 ◽  
Vol 22 (3) ◽  
pp. 401-412 ◽  
Author(s):  
Evandro F. Fang ◽  
Yujun Hou ◽  
Konstantinos Palikaras ◽  
Bryan A. Adriaanse ◽  
Jesse S. Kerr ◽  
...  

2011 ◽  
Vol 286 (40) ◽  
pp. 35104-35118 ◽  
Author(s):  
Kristel L. Emmer ◽  
Elisa A. Waxman ◽  
Jason P. Covy ◽  
Benoit I. Giasson

2001 ◽  
Vol 21 (20) ◽  
pp. 8198-8209 ◽  
Author(s):  
Katrin I. Andreasson ◽  
Alena Savonenko ◽  
Sveta Vidensky ◽  
Joseph J. Goellner ◽  
Yan Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document