protein degradation
Recently Published Documents


TOTAL DOCUMENTS

3398
(FIVE YEARS 710)

H-INDEX

136
(FIVE YEARS 18)

2022 ◽  
Vol 11 (2) ◽  
pp. 199-207
Author(s):  
Guliang Yang ◽  
Haiyan Zhong ◽  
Xinxin Xia ◽  
Zhiwen Qi ◽  
Chengzhang Wang ◽  
...  

2022 ◽  
Vol 67 ◽  
pp. 102114
Author(s):  
Andrew J. Tao ◽  
Gillian E. Gadbois ◽  
Stanley A. Buczynski ◽  
Fleur M. Ferguson

2022 ◽  
Vol 23 (2) ◽  
pp. 856
Author(s):  
Kamini Kaushal ◽  
Apoorvi Tyagi ◽  
Janardhan Keshav Karapurkar ◽  
Eun-Jung Kim ◽  
Parthasaradhireddy Tanguturi ◽  
...  

The osteoblast differentiation capacity of mesenchymal stem cells must be tightly regulated, as inadequate bone mineralization can lead to osteoporosis, and excess bone formation can cause the heterotopic ossification of soft tissues. The balanced protein level of Msh homeobox 1 (MSX1) is critical during normal osteogenesis. To understand the factors that prevent MSX1 protein degradation, the identification of deubiquitinating enzymes (DUBs) for MSX1 is essential. In this study, we performed loss-of-function-based screening for DUBs regulating MSX1 protein levels using the CRISPR/Cas9 system. We identified ubiquitin-specific protease 11 (USP11) as a protein regulator of MSX1 and further demonstrated that USP11 interacts and prevents MSX1 protein degradation by its deubiquitinating activity. Overexpression of USP11 enhanced the expression of several osteogenic transcriptional factors in human mesenchymal stem cells (hMSCs). Additionally, differentiation studies revealed reduced calcification and alkaline phosphatase activity in USP11-depleted cells, while overexpression of USP11 enhanced the differentiation potential of hMSCs. These results indicate the novel role of USP11 during osteogenic differentiation and suggest USP11 as a potential target for bone regeneration.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zoeb Jiwaji ◽  
Sachin S. Tiwari ◽  
Rolando X. Avilés-Reyes ◽  
Monique Hooley ◽  
David Hampton ◽  
...  

AbstractAlzheimer’s disease (AD) alters astrocytes, but the effect of Aß and Tau pathology is poorly understood. TRAP-seq translatome analysis of astrocytes in APP/PS1 ß-amyloidopathy and MAPTP301S tauopathy mice revealed that only Aß influenced expression of AD risk genes, but both pathologies precociously induced age-dependent changes, and had distinct but overlapping signatures found in human post-mortem AD astrocytes. Both Aß and Tau pathology induced an astrocyte signature involving repression of bioenergetic and translation machinery, and induction of inflammation pathways plus protein degradation/proteostasis genes, the latter enriched in targets of inflammatory mediator Spi1 and stress-activated cytoprotective Nrf2. Astrocyte-specific Nrf2 expression induced a reactive phenotype which recapitulated elements of this proteostasis signature, reduced Aß deposition and phospho-tau accumulation in their respective models, and rescued brain-wide transcriptional deregulation, cellular pathology, neurodegeneration and behavioural/cognitive deficits. Thus, Aß and Tau induce overlapping astrocyte profiles associated with both deleterious and adaptive-protective signals, the latter of which can slow patho-progression.


Author(s):  
Jennifer Cable ◽  
Eilika Weber‐Ban ◽  
Tim Clausen ◽  
Kylie J. Walters ◽  
Michal Sharon ◽  
...  

Author(s):  
Nathaniel J. Henning ◽  
Andrew G. Manford ◽  
Jessica N. Spradlin ◽  
Scott M. Brittain ◽  
Erika Zhang ◽  
...  
Keyword(s):  

2022 ◽  
Vol 12 ◽  
Author(s):  
Feng Wang ◽  
Shuo Ning ◽  
Beiming Yu ◽  
Yanfeng Wang

Ubiquitin-specific protease 14 (USP14), a deubiquitinating enzyme (DUB), is associated with proteasomes and exerts a dual function in regulating protein degradation. USP14 protects protein substrates from degradation by removing ubiquitin chains from proteasome-bound substrates, whereas promotes protein degradation by activating the proteasome. Increasing evidence have shown that USP14 is involved in several canonical signaling pathways, correlating with cancer, neurodegenerative diseases, autophagy, immune responses, and viral infections. The activity of USP14 is tightly regulated to ensure its function in various cellular processes. Structural studies have demonstrated that free USP14 exists in an autoinhibited state with two surface loops, BL1 and BL2, partially hovering above and blocking the active site cleft binding to the C-terminus of ubiquitin. Hence, both proteasome-bound and phosphorylated forms of USP14 require the induction of conformational changes in the BL2 loop to activate its deubiquitinating function. Due to its intriguing roles in the stabilization of disease-causing proteins and oncology targets, USP14 has garnered widespread interest as a therapeutic target. In recent years, significant progress has been made on identifying inhibitors targeting USP14, despite the complexity and challenges in improving their selectivity and affinity for USP14. In particular, the crystal structures of USP14 complexed with IU1-series inhibitors revealed the underlying allosteric regulatory mechanism and enabled the further design of potent inhibitors. In this review, we summarize the current knowledge regarding the structure, regulation, pathophysiological function, and selective inhibition of USP14, including disease associations and inhibitor development.


Sign in / Sign up

Export Citation Format

Share Document