scholarly journals Comparing ultrastable lasers at 7 × 10−17 fractional frequency instability through a 2220 km optical fibre network

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
M. Schioppo ◽  
J. Kronjäger ◽  
A. Silva ◽  
R. Ilieva ◽  
J. W. Paterson ◽  
...  

AbstractUltrastable lasers are essential tools in optical frequency metrology enabling unprecedented measurement precision that impacts on fields such as atomic timekeeping, tests of fundamental physics, and geodesy. To characterise an ultrastable laser it needs to be compared with a laser of similar performance, but a suitable system may not be available locally. Here, we report a comparison of two geographically separated lasers, over the longest ever reported metrological optical fibre link network, measuring 2220 km in length, at a state-of-the-art fractional-frequency instability of 7 × 10−17 for averaging times between 30 s and 200 s. The measurements also allow the short-term instability of the complete optical fibre link network to be directly observed without using a loop-back fibre. Based on the characterisation of the noise in the lasers and optical fibre link network over different timescales, we investigate the potential for disseminating ultrastable light to improve the performance of remote optical clocks.

Sensors ◽  
2017 ◽  
Vol 17 (6) ◽  
pp. 1377 ◽  
Author(s):  
Sylvie Delepine-Lesoille ◽  
Sylvain Girard ◽  
Marcel Landolt ◽  
Johan Bertrand ◽  
Isabelle Planes ◽  
...  

2007 ◽  
Vol 16 (12b) ◽  
pp. 2537-2540
Author(s):  
HUGH KLEIN

Optical frequency standards and femtosecond comb measurement capabilities now rival and in some cases exceed those of microwave devices, with further improvements anticipated. Opportunities are emerging for the application of highly stable and accurate optical frequency devices to fundamental physics space science activities, and the European Space Agency (ESA) has recently commissioned studies on different aspects of optical clocks in space. This paper highlights some examples, including the difficulty of comparing very accurate terrestrial clocks at different locations due to fluctuations of the geoid; by locating a primary frequency standard in space, one could avoid geoid-related gravitational redshifts.


Author(s):  
Xingjian Lai ◽  
Huanyi Shui ◽  
Jun Ni

Throughput bottlenecks define and constrain the productivity of a production line. Prediction of future bottlenecks provides a great support for decision-making on the factory floor, which can help to foresee and formulate appropriate actions before production to improve the system throughput in a cost-effective manner. Bottleneck prediction remains a challenging task in literature. The difficulty lies in the complex dynamics of manufacturing systems. There are multiple factors collaboratively affecting bottleneck conditions, such as machine performance, machine degradation, line structure, operator skill level, and product release schedules. These factors impact on one another in a nonlinear manner and exhibit long-term temporal dependencies. State-of-the-art research utilizes various assumptions to simplify the modeling by reducing the input dimensionality. As a result, those models cannot accurately reflect complex dynamics of the bottleneck in a manufacturing system. To tackle this problem, this paper will propose a systematic framework to design a two-layer Long Short-Term Memory (LSTM) network tailored to the dynamic bottleneck prediction problem in multi-job manufacturing systems. This neural network based approach takes advantage of historical high dimensional factory floor data to predict system bottlenecks dynamically considering the future production planning inputs. The model is demonstrated with data from an automotive underbody assembly line. The result shows that the proposed method can achieve higher prediction accuracy compared with current state-of-the-art approaches.


Author(s):  
Thomas Andreae ◽  
Wolfgang König ◽  
Robert Wynands ◽  
Theodor W. Hänsch

2020 ◽  
Vol 23 (65) ◽  
pp. 124-135
Author(s):  
Imane Guellil ◽  
Marcelo Mendoza ◽  
Faical Azouaou

This paper presents an analytic study showing that it is entirely possible to analyze the sentiment of an Arabic dialect without constructing any resources. The idea of this work is to use the resources dedicated to a given dialect \textit{X} for analyzing the sentiment of another dialect \textit{Y}. The unique condition is to have \textit{X} and \textit{Y} in the same category of dialects. We apply this idea on Algerian dialect, which is a Maghrebi Arabic dialect that suffers from limited available tools and other handling resources required for automatic sentiment analysis. To do this analysis, we rely on Maghrebi dialect resources and two manually annotated sentiment corpus for respectively Tunisian and Moroccan dialect. We also use a large corpus for Maghrebi dialect. We use a state-of-the-art system and propose a new deep learning architecture for automatically classify the sentiment of Arabic dialect (Algerian dialect). Experimental results show that F1-score is up to 83% and it is achieved by Multilayer Perceptron (MLP) with Tunisian corpus and with Long short-term memory (LSTM) with the combination of Tunisian and Moroccan. An improvement of 15% compared to its closest competitor was observed through this study. Ongoing work is aimed at manually constructing an annotated sentiment corpus for Algerian dialect and comparing the results


2020 ◽  
Vol 34 (05) ◽  
pp. 9571-9578 ◽  
Author(s):  
Wei Zhang ◽  
Yue Ying ◽  
Pan Lu ◽  
Hongyuan Zha

Personalized image caption, a natural extension of the standard image caption task, requires to generate brief image descriptions tailored for users' writing style and traits, and is more practical to meet users' real demands. Only a few recent studies shed light on this crucial task and learn static user representations to capture their long-term literal-preference. However, it is insufficient to achieve satisfactory performance due to the intrinsic existence of not only long-term user literal-preference, but also short-term literal-preference which is associated with users' recent states. To bridge this gap, we develop a novel multimodal hierarchical transformer network (MHTN) for personalized image caption in this paper. It learns short-term user literal-preference based on users' recent captions through a short-term user encoder at the low level. And at the high level, the multimodal encoder integrates target image representations with short-term literal-preference, as well as long-term literal-preference learned from user IDs. These two encoders enjoy the advantages of the powerful transformer networks. Extensive experiments on two real datasets show the effectiveness of considering two types of user literal-preference simultaneously and better performance over the state-of-the-art models.


2020 ◽  
Vol 34 (06) ◽  
pp. 10352-10360
Author(s):  
Jing Bi ◽  
Vikas Dhiman ◽  
Tianyou Xiao ◽  
Chenliang Xu

Learning from Demonstrations (LfD) via Behavior Cloning (BC) works well on multiple complex tasks. However, a limitation of the typical LfD approach is that it requires expert demonstrations for all scenarios, including those in which the algorithm is already well-trained. The recently proposed Learning from Interventions (LfI) overcomes this limitation by using an expert overseer. The expert overseer only intervenes when it suspects that an unsafe action is about to be taken. Although LfI significantly improves over LfD, the state-of-the-art LfI fails to account for delay caused by the expert's reaction time and only learns short-term behavior. We address these limitations by 1) interpolating the expert's interventions back in time, and 2) by splitting the policy into two hierarchical levels, one that generates sub-goals for the future and another that generates actions to reach those desired sub-goals. This sub-goal prediction forces the algorithm to learn long-term behavior while also being robust to the expert's reaction time. Our experiments show that LfI using sub-goals in a hierarchical policy framework trains faster and achieves better asymptotic performance than typical LfD.


Sign in / Sign up

Export Citation Format

Share Document