frequency instability
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 68)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
M. Schioppo ◽  
J. Kronjäger ◽  
A. Silva ◽  
R. Ilieva ◽  
J. W. Paterson ◽  
...  

AbstractUltrastable lasers are essential tools in optical frequency metrology enabling unprecedented measurement precision that impacts on fields such as atomic timekeeping, tests of fundamental physics, and geodesy. To characterise an ultrastable laser it needs to be compared with a laser of similar performance, but a suitable system may not be available locally. Here, we report a comparison of two geographically separated lasers, over the longest ever reported metrological optical fibre link network, measuring 2220 km in length, at a state-of-the-art fractional-frequency instability of 7 × 10−17 for averaging times between 30 s and 200 s. The measurements also allow the short-term instability of the complete optical fibre link network to be directly observed without using a loop-back fibre. Based on the characterisation of the noise in the lasers and optical fibre link network over different timescales, we investigate the potential for disseminating ultrastable light to improve the performance of remote optical clocks.


2022 ◽  
Author(s):  
Yueting Zhou ◽  
Gang Zhao ◽  
Jianxin Liu ◽  
Xiaojuan Yan ◽  
Zhixin Li ◽  
...  

Abstract The laser frequency could be linked to an radio frequency through an external cavity by the combination of Pound-Drever-Hall and Devoe-Brewer locking techniques. A stable and tunable optical frequency at wavelength of 1.5 μm obtained by a cavity with high finesse of 96,000 and a fiber laser, calibrated by a commercial optical frequency comb, has been demonstrated. The locking performances have been analyzed by in-loop and out-loop noises, indicating that the absolute frequency instability could be down to 50 kHz over 1 s and keep to less than 110 kHz over 2.5 h. Then, the application of this stabilized laser to the direct absorption spectroscopy has been performed. With the help of balanced detection, the detection sensitivity, in terms of optical density, can reach to 9.4×10-6.


2022 ◽  
Vol 20 (2) ◽  
pp. 021406
Author(s):  
Yifei Duan ◽  
Yafeng Huang ◽  
Yanli Li ◽  
Yating Wang ◽  
Meifeng Ye ◽  
...  

2021 ◽  
Author(s):  
Zhang Pan ◽  
Zhang Yan-Yan ◽  
Li Ming-Kun ◽  
Rao Bing-Jie ◽  
Yan Lu-Lu ◽  
...  

Abstract In this research, we demonstrate an optical frequency comb (OFC) based on a turnkey mode-locked laser with a figure-9 structure and polarization-maintaining fibers for frequency comparison between optical clocks with wavelengths of 698 nm, 729 nm, 1068 nm and 1156 nm. We adopt a multi-branch approach in order to produce high power OFC signals at these specific wavelengths, enabling the signal-to-noise ratio of the beatnotes between the OFC and the clock lasers beyond 30 dB at a resolution bandwidth of 300 kHz. This approach makes the supercontinuum spectra generating process much easier in comparison to a single branch OFC; however, more out-of-loop fibers degrade the long term frequency instability due to thermal drift. To minimize the thermal drift effect, we set the fiber lengths of different branches to be similar, and we stabilize the temperature as well. The out-of-loop frequency instability of the OFC due to the incoherence of the multi-branch is about 5.5×10-19 @ 4000 s, while the in-loop frequency instability of f ceo and that of f beat are 7.5×10-18 @1 s and 8.5×10-18 @1 s, respectively. The turnkey OFC meets the requirement of frequency comparison between the best optical clocks.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7710
Author(s):  
Amir Hussain ◽  
Wajiha Shireen

As the share of power converter-based renewable energy sources (RESs) is high, a microgrid, in islanded mode, is more vulnerable to frequency instability due to (1) sudden power imbalance and (2) low inertia. One of the most common approaches to address this issue is to provide virtual inertia to the system by appropriately controlling the grid-side converter of the RESs. However, the primary frequency controller (PFC) presented in this paper focuses on the fast compensation of power imbalance without adding inertia to the system. The proposed method is based on estimating the real-time power imbalance caused by a disturbance and compensating it using multiple small-scale distributed battery energy storage systems (BESSs). The power imbalance is estimated by observing the initial rate of change of frequency (RoCoF) following a disturbance. Based on the estimated power imbalance and the rating of the BESSs, the reference power for the BESSs is determined. The BESSs are controlled in grid-following mode to compensate for the power imbalance. The performance of the proposed PFC is verified using a Typhoon real-time simulator for various scenarios and is compared with the conventional virtual synchronous generator (VSG) controller.


2021 ◽  
Author(s):  
Hormoz Mehrkhodavandi ◽  
Ali Arefi ◽  
Amirmehdi Yazdani ◽  
Ashkan Najmizadeh ◽  
Shervin Fani

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mélodie-Neige Cornu ◽  
Raphaël Paris ◽  
Régis Doucelance ◽  
Patrick Bachélery ◽  
Chantal Bosq ◽  
...  

AbstractMass-wasting of ocean island volcanoes is a well-documented phenomenon. Massive flank collapses may imply tens to hundreds of km3 and generate mega-tsunamis. However, the causal links between this large-scale, low-frequency instability, and the time–space evolution of magma storage, crystal fractionation/accumulation, lithospheric assimilation, and partial melting remains unclear. This paper aims at tracking time variations and links between lithospheric, crustal and surface processes before and after a major flank collapse (Monte Amarelo collapse ca. 70 ka) of Fogo volcano, Cape Verde Islands, by analysing the chemical composition (major, trace elements, and Sr–Nd–Pb isotopes) and age-controlled stratigraphy (K–Ar and Ar–Ar dating) of lavas along vertical sections (Bordeira caldera walls). The high-resolution sampling allows detecting original variations of composition at different time-scales: (1) a 60 kyrs-long period of increase of magma differentiation before the collapse; (2) a 10 kyrs-long episode of reorganization of magma storage and evacuation of residual magmas (enriched in incompatible elements) after the collapse; and (3) a delayed impact at the lithospheric scale ~ 50 kyrs after the collapse (increasing EM1-like materiel assimilation).


2021 ◽  
Author(s):  
Likai Liu ◽  
Zechun Hu ◽  
Nikhil Pathak ◽  
Haocheng Luo

Large-scale integration of converter-based renewable energy sources (RESs) into the power system will lead to a higher risk of frequency nadir limit violation and even frequency instability after the large power disturbance. Therefore, it is essential to consider the frequency nadir constraint (FNC) in power system scheduling. Nevertheless, the FNC is highly nonlinear and nonconvex. The <a>state-of-the-art</a> method to simplify the constraint is to construct a low-order frequency response model at first, and then linearize the frequency nadir equation. In this letter, an extreme learning machine (ELM)-based network is built to <a>derive </a>the linear formulation of FNC, where the two-step fitting process is integrated into one training process and more details about the physical model of the generator are considered to reduce the fitting error. Simulation results show the superiority of the proposed method on the fitting accuracy.


2021 ◽  
Author(s):  
Likai Liu ◽  
Zechun Hu ◽  
Nikhil Pathak ◽  
Haocheng Luo

Large-scale integration of converter-based renewable energy sources (RESs) into the power system will lead to a higher risk of frequency nadir limit violation and even frequency instability after the large power disturbance. Therefore, it is essential to consider the frequency nadir constraint (FNC) in power system scheduling. Nevertheless, the FNC is highly nonlinear and nonconvex. The <a>state-of-the-art</a> method to simplify the constraint is to construct a low-order frequency response model at first, and then linearize the frequency nadir equation. In this letter, an extreme learning machine (ELM)-based network is built to <a>derive </a>the linear formulation of FNC, where the two-step fitting process is integrated into one training process and more details about the physical model of the generator are considered to reduce the fitting error. Simulation results show the superiority of the proposed method on the fitting accuracy.


Sign in / Sign up

Export Citation Format

Share Document