scholarly journals Designing polymer nanocomposites with high energy density using machine learning

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhong-Hui Shen ◽  
Zhi-Wei Bao ◽  
Xiao-Xing Cheng ◽  
Bao-Wen Li ◽  
Han-Xing Liu ◽  
...  

AbstractAddressing microstructure-property relations of polymer nanocomposites is vital for designing advanced dielectrics for electrostatic energy storage. Here, we develop an integrated phase-field model to simulate the dielectric response, charge transport, and breakdown process of polymer nanocomposites. Subsequently, based on 6615 high-throughput calculation results, a machine learning strategy is schemed to evaluate the capability of energy storage. We find that parallel perovskite nanosheets prefer to block and then drive charges to migrate along with the interfaces in x-y plane, which could significantly improve the breakdown strength of polymer nanocomposites. To verify our predictions, we fabricate a polymer nanocomposite P(VDF-HFP)/Ca2Nb3O10, whose highest discharged energy density almost doubles to 35.9 J cm−3 compared with the pristine polymer, mainly benefit from the improved breakdown strength of 853 MV m−1. This work opens a horizon to exploit the great potential of 2D perovskite nanosheets for a wide range of applications of flexible dielectrics with the requirement of high voltage endurance.

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2942
Author(s):  
Bhausaheb V. Tawade ◽  
Ikeoluwa E. Apata ◽  
Nihar Pradhan ◽  
Alamgir Karim ◽  
Dharmaraj Raghavan

The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the ”grafting from” and ”grafting to” approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Dou Zhang ◽  
Xuefan Zhou ◽  
James Roscow ◽  
Kechao Zhou ◽  
Lu Wang ◽  
...  

Abstract There is a growing need for high energy density capacitors in modern electric power supplies. The creation of nanocomposite systems based on one-dimensional nanofibers has shown great potential in achieving a high energy density since they can optimize the energy density by exploiting both the high permittivity of ceramic fillers and the high breakdown strength of the polymer matrix. In this paper, BaTiO3 nanofibers (NFs) with different aspect ratio were synthesized by a two-step hydrothermal method and the permittivity and energy storage of the P(VDF-HFP) nanocomposites were investigated. It is found that as the BaTiO3 NF aspect ratio and volume fraction increased the permittivity and maximum electric displacement of the nanocomposites increased, while the breakdown strength decreased. The nanocomposites with the highest aspect ratio BaTiO3 NFs exhibited the highest energy storage density at the same electric field. However, the nanocomposites with the lowest aspect ratio BaTiO3 NFs achieved the maximal energy storage density of 15.48 J/cm3 due to its higher breakdown strength. This contribution provides a potential route to prepare and tailor the properties of high energy density capacitor nanocomposites.


2019 ◽  
Vol 7 (25) ◽  
pp. 15198-15206 ◽  
Author(s):  
Xin Huang ◽  
Xin Zhang ◽  
Guang-Kun Ren ◽  
Jianyong Jiang ◽  
Zhenkang Dan ◽  
...  

In situ synthesized Ag nanodots enhances electrostatic energy storage by tuning dipoles.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
JingJing Xu ◽  
Chao Fu ◽  
Huiying Chu ◽  
Xianyou Wu ◽  
Zhongyang Tan ◽  
...  

Abstract In recent years, high energy density polymer capacitors have attracted a lot of scientific interest due to their potential applications in advanced power systems and electronic devices. Here, core–shell structured TiO2@SrTiO3@polydamine nanowires (TiO2@SrTiO3@PDA NWs) were synthesized via a combination of surface conversion reaction and in-situ polymerization method, and then incorporated into the poly(vinylidene fluoride) (PVDF) matrix. Our results showed that a small amount of TiO2@SrTiO3@PDA NWs can simultaneously enhance the breakdown strength and electric displacement of nanocomposite (NC) films, resulting in improved energy storage capability. The 5 wt% TiO2@SrTiO3@PDA NWs/PVDF NC demonstrates 1.72 times higher maximum discharge energy density compared to pristine PVDF (10.34 J/cm3 at 198 MV/m vs. 6.01 J/cm3 at 170 MV/m). In addition, the NC with 5 wt% TiO2@SrTiO3@PDA NWs also demonstrates an excellent charge–discharge efficiency (69% at 198 MV/m). Enhanced energy storage performance is due to hierarchical interfacial polarization among their multiple interfaces, the large aspect ratio as well as surface modification of the TiO2@SrTiO3 NWs. The results of this study provide guidelines and a foundation for the preparation of the polymer NCs with an outstanding discharge energy density.


2013 ◽  
Vol 114 (17) ◽  
pp. 174107 ◽  
Author(s):  
Ke Yu ◽  
Yujuan Niu ◽  
Feng Xiang ◽  
Yongcun Zhou ◽  
Yuanyuan Bai ◽  
...  

2019 ◽  
Vol 48 (16) ◽  
pp. 4424-4465 ◽  
Author(s):  
Hang Luo ◽  
Xuefan Zhou ◽  
Christopher Ellingford ◽  
Yan Zhang ◽  
Sheng Chen ◽  
...  

A detailed overview on interface design and control in polymer based composite dielectrics for energy storage applications.


2017 ◽  
Vol 5 (12) ◽  
pp. 3112-3120 ◽  
Author(s):  
Guanyao Wang ◽  
Xingyi Huang ◽  
Pingkai Jiang

A mussel-inspired dopamine derivative (h-DOPA) is employed to modify anatase TiO2 NWs for the fabrication of high-energy-density polymer nanocomposites.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1349 ◽  
Author(s):  
Jian Wang ◽  
Yunchuan Xie ◽  
Jingjing Liu ◽  
Zhicheng Zhang ◽  
Qiang Zhuang ◽  
...  

Polymer-based nanodielectrics have been intensively investigated for their potential application as energy storage capacitors. However, their relatively low energy density (Ue) and discharging efficiency (η) may greatly limit their practical usage. In present work, high insulating two-dimensional boron nitride nanosheets (BNNS), were introduced into a linear dielectric polymer (P(VDF-TrFE-CTFE)-g-PMMA) matrix to enhance the energy storage performance of the composite. Thanks to the surface coating of polydopamine (PDA) on BN nanosheets, the composite filled with 6 wt% coated BNNS (mBNNS) exhibits significantly improved breakdown strength (Eb) of 540 MV/m and an energy density (Ue) of 11 J/cm3, which are increased by 23% and 100%, respectively as compared with the composite filled with the same content of pristine BNNS. Meanwhile, η of both composites is well retained at around 70% even under a high voltage of 400 MV/m, which is superior to most of the reported composites. This work suggests that complexing polymer matrix with linear dielectric properties with surface coated BNNS fillers with high insulating 2D structure might be a facile strategy to achieve composite dielectrics with simultaneously high energy density and high discharging efficiency.


Sign in / Sign up

Export Citation Format

Share Document