scholarly journals Removal of heavy metal ions from wastewater: a comprehensive and critical review

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Naef A. A. Qasem ◽  
Ramy H. Mohammed ◽  
Dahiru U. Lawal

AbstractRemoval of heavy metal ions from wastewater is of prime importance for a clean environment and human health. Different reported methods were devoted to heavy metal ions removal from various wastewater sources. These methods could be classified into adsorption-, membrane-, chemical-, electric-, and photocatalytic-based treatments. This paper comprehensively and critically reviews and discusses these methods in terms of used agents/adsorbents, removal efficiency, operating conditions, and the pros and cons of each method. Besides, the key findings of the previous studies reported in the literature are summarized. Generally, it is noticed that most of the recent studies have focused on adsorption techniques. The major obstacles of the adsorption methods are the ability to remove different ion types concurrently, high retention time, and cycling stability of adsorbents. Even though the chemical and membrane methods are practical, the large-volume sludge formation and post-treatment requirements are vital issues that need to be solved for chemical techniques. Fouling and scaling inhibition could lead to further improvement in membrane separation. However, pre-treatment and periodic cleaning of membranes incur additional costs. Electrical-based methods were also reported to be efficient; however, industrial-scale separation is needed in addition to tackling the issue of large-volume sludge formation. Electric- and photocatalytic-based methods are still less mature. More attention should be drawn to using real wastewaters rather than synthetic ones when investigating heavy metals removal. Future research studies should focus on eco-friendly, cost-effective, and sustainable materials and methods.

2019 ◽  
Vol 70 (5) ◽  
pp. 1507-1512
Author(s):  
Baker M. Abod ◽  
Ramy Mohamed Jebir Al-Alawy ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor

The aim of this study is to use the dry fibers of date palm as low-cost biosorbent for the removal of Cd(II), and Ni(II) ions from aqueous solution by fluidized bed column. The effects of many operating conditions such as superficial velocity, static bed height, and initial concentration on the removal efficiency of metal ions were investigated. FTIR analyses clarified that hydroxyl, amine and carboxyl groups could be very effective for bio-sorption of these heavy metal ions. SEM images showed that dry fibers of date palm have a high porosity and that metal ions can be trapped and sorbed into pores. The results show that a bed height of 6 cm, velocity of 1.1Umf and initial concentration for each heavy metal ions of 50 mg/L are most feasible and give high removal efficiency. The fluidized bed reactor was modeled using ideal plug flow and this model was solved numerically by utilizing the MATLAB software for fitting the measured breakthrough results. The breakthrough curves for metal ions gave the order of bio-sorption capacity as follow: Cd(II)]Ni(II).


2021 ◽  
Vol 12 (2) ◽  
pp. 1884-1898

Natural water gets contaminated with heavy metal ions because of industrial effluents' discharge into the aquatic environment. As these heavy metal ions cause various health hazards, they should be removed from the aqueous solution. Heavy metal ion concentration in the aqueous solution is very less, so conventional metal removal and recovery processes cannot be applied here. The adsorption method is a great alternative to all these processes as it is a cost-effective and easy method. The use of natural, low-cost materials as adsorbents is eco-friendly also. However, metal uptake capacity of low-cost materials is very less. So, modification is required for low-cost materials to increase their efficiency. In the present review, different modification procedures adopted by different researchers have been discussed. Different low-cost materials used are sawdust, fruit and vegetable wastes, soil, minerals, etc. The modifying agents are heat, acids, bases, and other chemicals. Nevertheless, most of the studies are limited to batch tests only. Future research should be carried out on the extension of batch tests to column study for the large-scale treatment of contaminated water, and the cost of modification procedures and their impact on the environment should also be assessed.


2021 ◽  
Vol 11 (3) ◽  
pp. 3822-3825

We report the findings of preliminary investigation corresponding to an optical detection technique implementing smartphone as our receiver towards quantitative assessment of heavy metal ions, namely, Cu, Zn, and Ni. Using intensity modulation, the optical responses are attained through a user-friendly app. The sensing region is made up of optical fiber whose cladding portion has been etched. Subject to varying concentrations of these metal ions, the modulated responses are attained, which reveal a declining trend. The absence of traditional parts such as a spectrophotometer makes the reported scheme cost-effective as well as field-portable.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Abate Ayele ◽  
Yakob Godebo Godeto

Heavy metals generated mainly through many anthropogenic processes, and some natural processes have been a great environmental challenge and continued to be the concern of many researchers and environmental scientists. This is mainly due to their highest toxicity even at a minimum concentration as they are nonbiodegradable and can persist in the aquatic and terrestrial environments for long periods. Chromium ions, especially hexavalent ions (Cr(VI)) generated through the different industrial process such as tanneries, metallurgical, petroleum, refractory, oil well drilling, electroplating, mining, textile, pulp and paper industries, are among toxic heavy metal ions, which pose toxic effects to human, plants, microorganisms, and aquatic lives. This review work is aimed at biosorption of hexavalent chromium (Cr(VI)) through microbial biomass, mainly bacteria, fungi, and microalgae, factors influencing the biosorption of chromium by microorganisms and the mechanism involved in the remediation process and the functional groups participated in the uptake of toxic Cr(VI) from contaminated environments by biosorbents. The biosorption process is relatively more advantageous over conventional remediation technique as it is rapid, economical, requires minimal preparatory steps, efficient, needs no toxic chemicals, and allows regeneration of biosorbent at the end of the process. Also, the presence of multiple functional groups in microbial cell surfaces and more active binding sites allow easy uptake and binding of a greater number of toxic heavy metal ions from polluted samples. This could be useful in creating new insights into the development and advancement of future technologies for future research on the bioremediation of toxic heavy metals at the industrial scale.


Nano Progress ◽  
2019 ◽  
Vol 1 (1) ◽  
Author(s):  
C.M. Babu ◽  
R. Balasubramanian ◽  
R. Vinodh ◽  
P. Thirukumaran ◽  
A. Shakila Parveen ◽  
...  

Nano Progress ◽  
2019 ◽  
Vol 1 (1) ◽  
Author(s):  
C.M. Babu ◽  
R. Balasubramanian ◽  
R. Vinodh ◽  
P. Thirukumaran ◽  
A. Shakila Parveen ◽  
...  

Author(s):  
Mintu Maan Dutta ◽  
Anushmita Charingia

Most countries worldwide face the problem related to clean and safe water. The major source of contamination of water bodies includes the discharges of wastes from various domestic and industrial sources (heavy metal ions, dyes, and pharmaceuticals). To overcome those problems, various water purification methods such as coagulation, flocculation, adsorption, membrane separation, biological, and electrochemical methods have been engaged. Adsorption using nano-biosorbents based on chitin, chitosan and modified chitosan, cellulose, alginate, micro algal has emerged as a better alternative for the removal of contaminants from drinking and wastewater treatment. The main advantages of these nano-biosorbents include its biodegradability and eco-friendliness, which have attracted researchers to this field.


2021 ◽  
Vol 25 (Special) ◽  
pp. 3-88-3-96
Author(s):  
Hibatallah J. Shamkhi ◽  
◽  
Tamara K. Hussein ◽  

Pollution with heavy metal ions lead, zinc and nickel resulting from industrial wastewater for various industries such as electroplating industry, batteries, metal refining mines and other factories which discharge into the environment causing damage and pollution to the environment, living organisms, and the majority of heavy metals carcinogenic due to its high toxicity and its containment of dangerous chemicals. Potential danger to human health in all forms by ingestion, inhalation, or skin contact pose by heavy metals ions such as lead, nickel, zinc, and others. To prevent hazards, they must be removed before disposal by different methods such as ion- exchange, chemical separation, filtration, membrane separation, and adsorption. The purpose of this research is to review different low cost adsorbent materials to remove heavy metal ions lead, zinc and nickel from wastewater.


NANO ◽  
2018 ◽  
Vol 13 (09) ◽  
pp. 1830006 ◽  
Author(s):  
Nader Ghaffari Khaligh ◽  
Mohd Rafie Johan

The pollution of water due to the release of heavy metals are particularly problematic and supplies of clean water have become a major problem worldwide. The heavy metal ions can cause toxicities and serious side effects toward human health; therefore, these metal ions should be removed from water and wastewater. A variety of strategies have been developed for efficient heavy metal removal from waters. Adsorption/ion exchange strategy play a great important role in removing heavy metal ions due to their advantages. Nanomaterials are excellent adsorbents and extensive studies have been performed to remove heavy metals from wastewater by developing and using various nanomaterials. Recent developments for the heavy metals removal by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials in batch and flow systems are described in this review.


Sign in / Sign up

Export Citation Format

Share Document