scholarly journals A cortical circuit for audio-visual predictions

Author(s):  
Aleena R. Garner ◽  
Georg B. Keller

AbstractLearned associations between stimuli in different sensory modalities can shape the way we perceive these stimuli. However, it is not well understood how these interactions are mediated or at what level of the processing hierarchy they occur. Here we describe a neural mechanism by which an auditory input can shape visual representations of behaviorally relevant stimuli through direct interactions between auditory and visual cortices in mice. We show that the association of an auditory stimulus with a visual stimulus in a behaviorally relevant context leads to experience-dependent suppression of visual responses in primary visual cortex (V1). Auditory cortex axons carry a mixture of auditory and retinotopically matched visual input to V1, and optogenetic stimulation of these axons selectively suppresses V1 neurons that are responsive to the associated visual stimulus after, but not before, learning. Our results suggest that cross-modal associations can be communicated by long-range cortical connections and that, with learning, these cross-modal connections function to suppress responses to predictable input.

2020 ◽  
Author(s):  
Aleena R. Garner ◽  
Georg B. Keller

ABSTRACTLearned associations between stimuli in different sensory modalities can shape the way we perceive these stimuli (Mcgurk and Macdonald, 1976). During audio-visual associative learning, auditory cortex is thought to underlie multi-modal plasticity in visual cortex (McIntosh et al., 1998; Mishra et al., 2007; Zangenehpour and Zatorre, 2010). However, it is not well understood how processing in visual cortex is altered by an auditory stimulus that is predictive of a visual stimulus and what the mechanisms are that mediate such experience-dependent, audio-visual associations in sensory cortex. Here we describe a neural mechanism by which an auditory input can shape visual representations of behaviorally relevant stimuli through direct interactions between auditory and visual cortices. We show that the association of an auditory stimulus with a visual stimulus in a behaviorally relevant context leads to an experience-dependent suppression of visual responses in primary visual cortex (V1). Auditory cortex axons carry a mixture of auditory and retinotopically-matched visual input to V1, and optogenetic stimulation of these axons selectively suppresses V1 neurons responsive to the associated visual stimulus after, but not before, learning. Our results suggest that cross-modal associations can be stored in long-range cortical connections and that with learning these cross-modal connections function to suppress the responses to predictable input.


2019 ◽  
Vol 121 (6) ◽  
pp. 2202-2214 ◽  
Author(s):  
John P. McClure ◽  
Pierre-Olivier Polack

Multimodal sensory integration facilitates the generation of a unified and coherent perception of the environment. It is now well established that unimodal sensory perceptions, such as vision, are improved in multisensory contexts. Whereas multimodal integration is primarily performed by dedicated multisensory brain regions such as the association cortices or the superior colliculus, recent studies have shown that multisensory interactions also occur in primary sensory cortices. In particular, sounds were shown to modulate the responses of neurons located in layers 2/3 (L2/3) of the mouse primary visual cortex (V1). Yet, the net effect of sound modulation at the V1 population level remained unclear. In the present study, we performed two-photon calcium imaging in awake mice to compare the representation of the orientation and the direction of drifting gratings by V1 L2/3 neurons in unimodal (visual only) or multimodal (audiovisual) conditions. We found that sound modulation depended on the tuning properties (orientation and direction selectivity) and response amplitudes of V1 L2/3 neurons. Sounds potentiated the responses of neurons that were highly tuned to the cue’s orientation and direction but weakly active in the unimodal context, following the principle of inverse effectiveness of multimodal integration. Moreover, sound suppressed the responses of neurons untuned for the orientation and/or the direction of the visual cue. Altogether, sound modulation improved the representation of the orientation and direction of the visual stimulus in V1 L2/3. Namely, visual stimuli presented with auditory stimuli recruited a neuronal population better tuned to the visual stimulus orientation and direction than when presented alone. NEW & NOTEWORTHY The primary visual cortex (V1) receives direct inputs from the primary auditory cortex. Yet, the impact of sounds on visual processing in V1 remains controverted. We show that the modulation by pure tones of V1 visual responses depends on the orientation selectivity, direction selectivity, and response amplitudes of V1 neurons. Hence, audiovisual stimuli recruit a population of V1 neurons better tuned to the orientation and direction of the visual stimulus than unimodal visual stimuli.


2017 ◽  
Author(s):  
J Couto ◽  
S Kandler ◽  
D Mao ◽  
BL McNaughton ◽  
L Arckens ◽  
...  

ABSTRACTMultisensory integration is key for perception and animal survival yet how information from separate senses is integrated has been debated for decades. In the cortex, information from each sense is first processed in primary sensory areas and then combined in association areas. An alternative hypothesis to this hierarchical model is that primary sensory cortices partake in multisensory encoding. We probed tactile and visual responses in primary somatosensory and visual cortices in awake behaving animals using two-photon calcium imaging from layer 2/3 excitatory neurons. In support of an hierarchical model we found segregation of visual and tactile responses. Tactile stimuli evoked responses in S1 neurons. In striking contrast, V1 neurons failed to respond to tactile stimuli. This was true for passive whisker stimulation and for stimulation during active whisking. Furthermore, responses of V1 neurons to congruent visuo-tactile cues during active exploration, a condition where vision precedes touch, were completely abolished in darkness. The rostro-lateral area of the visual cortex responded to both visual and tactile aspects of the stimuli and may form a substrate for encoding multisensory signals during active exploration. Our results indicate that primary sensory areas mainly encode their primary sense and that the impact of other modalities may be restricted to modulatory effects.


2017 ◽  
Author(s):  
Zicong Zhang ◽  
Christine Xuejiao Zheng ◽  
Yujie Peng ◽  
Yiping Guo ◽  
Danyi Lu ◽  
...  

SUMMARYWe investigated whether visuoauditory association can be artificially implanted in rodents and then retrieved in a behaviorally relevant context. Rats were trained to approach the left or right hole of a behavioral apparatus to retrieve a reward depending on the side of electrical stimulation of the auditory cortex (EAC) they received and mice were fear-conditioned to EAC. Next, an irrelevant visual stimulus (VS) was repeatedly paired with EAC in the presence of cholecystokinin (CCK) or with activation of terminals of entorhinal CCK neurons in the auditory cortex. In subsequent behavioral testing with VS, rats approached the hole associated with reward availability and mice showed a freezing response to the VS. A CCK antagonist blocked the establishment of visuoauditory association, whereas a CCK agonist rescued the deficit of association. Our findings provide a scientific foundation for “memory implantation” and indicate that CCK is the switching chemical for formation of visuoauditory association.


2021 ◽  
Author(s):  
Silei Zhu ◽  
J. Michael Hasse ◽  
Farran Briggs

The feedforward projection from the retina shapes the spatial receptive field properties of neurons in the dorsal lateral geniculate nucleus of the thalamus (LGN). Corticogeniculate feedback from the visual cortex appears to exert a more subtle, modulatory influence on LGN responses. Studies involving manipulations of corticogeniculate feedback have yielded inconsistent findings, but the reasons for these inconsistencies are not known. To examine the functional contributions of corticogeniculate feedback, and to resolve past inconsistencies, we examined the effects of selective optogenetic suppression of corticogeniculate neurons in anesthetized ferrets. In particular, we examined the responses of LGN and V1 neurons during optogenetic suppression of corticogeniculate feedback in the presence and absence of visual stimulation and across conditions in which the frequency of LED illumination varied. Optogenetic suppression of corticogeniculate feedback decreased activity among LGN neurons in the absence of visual stimulation, dispelling the notion that anesthesia causes a floor effect. In contrast, suppressing corticogeniculate feedback did not affect the visual responses of LGN neurons, suggesting that feedforward visual stimulus drive overrides weak corticogeniculate influence. Optogenetic effects on LGN and V1 neuronal responses depended on the frequency of LED illumination, with higher frequency illumination inducing slow oscillations in V1, dis-inhibiting V1 neurons locally, and producing more suppression among LGN neurons. These results demonstrate that corticogeniculate influence depends on stimulation parameters including visual stimulus conditions and frequency of inactivation. Furthermore, weak corticogeniculate influence is overridden by strong feedforward visual stimulus drive; this attribute is the most likely source of inconsistencies in past studies.


Author(s):  
Archana Venkataraman ◽  
Sarah C. Hunter ◽  
Maria Dhinojwala ◽  
Diana Ghebrezadik ◽  
JiDong Guo ◽  
...  

AbstractFear generalization and deficits in extinction learning are debilitating dimensions of Post-Traumatic Stress Disorder (PTSD). Most understanding of the neurobiology underlying these dimensions comes from studies of cortical and limbic brain regions. While thalamic and subthalamic regions have been implicated in modulating fear, the potential for incerto-thalamic pathways to suppress fear generalization and rescue deficits in extinction recall remains unexplored. We first used patch-clamp electrophysiology to examine functional connections between the subthalamic zona incerta and thalamic reuniens (RE). Optogenetic stimulation of GABAergic ZI → RE cell terminals in vitro induced inhibitory post-synaptic currents (IPSCs) in the RE. We then combined high-intensity discriminative auditory fear conditioning with cell-type-specific and projection-specific optogenetics in mice to assess functional roles of GABAergic ZI → RE cell projections in modulating fear generalization and extinction recall. In addition, we used a similar approach to test the possibility of fear generalization and extinction recall being modulated by a smaller subset of GABAergic ZI → RE cells, the A13 dopaminergic cell population. Optogenetic stimulation of GABAergic ZI → RE cell terminals attenuated fear generalization and enhanced extinction recall. In contrast, optogenetic stimulation of dopaminergic ZI → RE cell terminals had no effect on fear generalization but enhanced extinction recall in a dopamine receptor D1-dependent manner. Our findings shed new light on the neuroanatomy and neurochemistry of ZI-located cells that contribute to adaptive fear by increasing the precision and extinction of learned associations. In so doing, these data reveal novel neuroanatomical substrates that could be therapeutically targeted for treatment of PTSD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoko Kato ◽  
Harumi Katsumata ◽  
Ayumu Inutsuka ◽  
Akihiro Yamanaka ◽  
Tatsushi Onaka ◽  
...  

AbstractMultiple sequential actions, performed during parental behaviors, are essential elements of reproduction in mammalian species. We showed that neurons expressing melanin concentrating hormone (MCH) in the lateral hypothalamic area (LHA) are more active in rodents of both sexes when exhibiting parental nursing behavior. Genetic ablation of the LHA-MCH neurons impaired maternal nursing. The post-birth survival rate was lower in pups born to female mice with congenitally ablated MCH neurons under control of tet-off system, exhibiting reduced crouching behavior. Virgin female and male mice with ablated MCH neurons were less interested in pups and maternal care. Chemogenetic and optogenetic stimulation of LHA-MCH neurons induced parental nursing in virgin female and male mice. LHA-MCH GABAergic neurons project fibres to the paraventricular hypothalamic nucleus (PVN) neurons. Optogenetic stimulation of PVN induces nursing crouching behavior along with increasing plasma oxytocin levels. The hypothalamic MCH neural relays play important functional roles in parental nursing behavior in female and male mice.


1996 ◽  
Vol 76 (3) ◽  
pp. 1439-1456 ◽  
Author(s):  
P. Mazzoni ◽  
R. M. Bracewell ◽  
S. Barash ◽  
R. A. Andersen

1. The lateral intraparietal area (area LIP) of the monkey's posterior parietal cortex (PPC) contains neurons that are active during saccadic eye movements. These neurons' activity includes visual and saccade-related components. These responses are spatially tuned and the location of a neuron's visual receptive field (RF) relative to the fovea generally overlaps its preferred saccade amplitude and direction (i.e., its motor field, MF). When a delay is imposed between the presentation of a visual stimulus and a saccade made to its location (memory saccade task), many LIP neurons maintain elevated activity during the delay (memory activity, M), which appears to encode the metrics of the next intended saccadic eye movements. Recent studies have alternatively suggested that LIP neurons encode the locations of visual stimuli regardless of where the animal intends to look. We examined whether the M activity of LIP neurons specifically encodes movement intention or the locations of recent visual stimuli, or a combination of both. In the accompanying study, we investigated whether the intended-movement activity reflects changes in motor plan. 2. We trained monkeys (Macaca mulatta) to memorize the locations of two visual stimuli and plan a sequence of two saccades, one to each remembered target, as we recorded the activity of single LIP neurons. Two targets were flashed briefly while the monkey maintained fixation; after a delay the fixation point was extinguished, and the monkey made two saccades in sequence to each target's remembered location, in the order in which the targets were presented. This "delayed double saccade" (DDS) paradigm allowed us to dissociate the location of visual stimulation from the direction of the planned saccade and thus distinguish neuronal activity related to the target's location from activity related to the saccade plan. By imposing a delay, we eliminated the confounding effect of any phasic responses coincident with the appearance of the stimulus and with the saccade. 3. We arranged the two visual stimuli so that in one set of conditions at least the first one was in the neuron's visual RF, and thus the first saccade was in the neuron's motor field (MF). M activity should be high in these conditions according to both the sensory memory and motor plan hypotheses. In another set of conditions, the second stimulus appeared in the RF but the first one was presented outside the RF, instructing the monkey to plan the first saccade away from the neuron's MF. If the M activity encodes the motor plan, it should be low in these conditions, reflecting the plan for the first saccade (away from the MF). If it is a sensory trace of the stimulus' location, it should be high, reflecting stimulation of the RF by the second target. 4. We tested 49 LIP neurons (in 3 hemispheres of 2 monkeys) with M activity on the DDS task. Of these, 38 (77%) had M activity related to the next intended saccade. They were active in the delay period, as expected, if the first saccade was in their preferred direction. They were less active or silent if the next saccade was not in their preferred direction, even when the second stimulus appeared in their RF. 5. The M activity of 8 (16%) of the remaining neurons specifically encoded the location of the most recent visual stimulus. Their firing rate during the delay reflected stimulation of the RF independently of the saccade being planned. The remaining 3 neurons had M activity that did not consistently encode either the next saccade or the stimulus' location. 6. We also recorded the activity of a subset of neurons (n = 38) in a condition in which no stimulus appeared in a neuron's RF, but the second saccade was in the neuron's MF. In this case the majority of neurons tested (23/38, 60%) became active in the period between the first and second saccade, even if neither stimulus had appeared in their RF. Moreover, this activity appeared only after the first saccade had started in all but two of


Sign in / Sign up

Export Citation Format

Share Document