direction selectivity
Recently Published Documents


TOTAL DOCUMENTS

464
(FIVE YEARS 80)

H-INDEX

66
(FIVE YEARS 5)

Cell Reports ◽  
2022 ◽  
Vol 38 (2) ◽  
pp. 110225
Author(s):  
Alexandre Tiriac ◽  
Karina Bistrong ◽  
Miah N. Pitcher ◽  
Joshua M. Tworig ◽  
Marla B. Feller

2021 ◽  
Vol 17 (12) ◽  
pp. e1009754
Author(s):  
Elishai Ezra-Tsur ◽  
Oren Amsalem ◽  
Lea Ankri ◽  
Pritish Patil ◽  
Idan Segev ◽  
...  

Retinal direction-selectivity originates in starburst amacrine cells (SACs), which display a centrifugal preference, responding with greater depolarization to a stimulus expanding from soma to dendrites than to a collapsing stimulus. Various mechanisms were hypothesized to underlie SAC centrifugal preference, but dissociating them is experimentally challenging and the mechanisms remain debatable. To address this issue, we developed the Retinal Stimulation Modeling Environment (RSME), a multifaceted data-driven retinal model that encompasses detailed neuronal morphology and biophysical properties, retina-tailored connectivity scheme and visual input. Using a genetic algorithm, we demonstrated that spatiotemporally diverse excitatory inputs–sustained in the proximal and transient in the distal processes–are sufficient to generate experimentally validated centrifugal preference in a single SAC. Reversing these input kinetics did not produce any centrifugal-preferring SAC. We then explored the contribution of SAC-SAC inhibitory connections in establishing the centrifugal preference. SAC inhibitory network enhanced the centrifugal preference, but failed to generate it in its absence. Embedding a direction selective ganglion cell (DSGC) in a SAC network showed that the known SAC-DSGC asymmetric connectivity by itself produces direction selectivity. Still, this selectivity is sharpened in a centrifugal-preferring SAC network. Finally, we use RSME to demonstrate the contribution of SAC-SAC inhibitory connections in mediating direction selectivity and recapitulate recent experimental findings. Thus, using RSME, we obtained a mechanistic understanding of SACs’ centrifugal preference and its contribution to direction selectivity.


2021 ◽  
Author(s):  
Yeon Jin Kim ◽  
Beth Peterson ◽  
Joanna Crook ◽  
Hannah Joo ◽  
Jiajia Wu ◽  
...  

Abstract From mouse to primate, there is a striking discontinuity in our current understanding of the neural coding of motion direction. In non-primate mammals, directionally selective cell types and circuits are a signature feature of the retina, situated at the earliest stage of the visual process1,2. In primates, by contrast, direction selectivity is a hallmark of motion processing areas in visual cortex3,4, but has not been found in the retina, despite significant effort5,6. Here we combined functional recordings of light-evoked responses and connectomic reconstruction to identify diverse direction-selective cell types in the macaque monkey retina with distinctive physiological properties and synaptic motifs. This circuitry includes an ON-OFF ganglion cell type, a spiking, ON-OFF poly-axonal amacrine cell and the starburst amacrine cell, all of which show direction selectivity. Moreover, we found unexpectedly that macaque starburst cells possess a strong, non-GABAergic, antagonistic surround mediated by input from excitatory bipolar cells that is critical for the generation of radial motion sensitivity in these cells. Our findings open a new door to investigation of a novel circuitry that computes motion direction in the primate visual system.


Neuron ◽  
2021 ◽  
Vol 109 (23) ◽  
pp. 3895-3896
Author(s):  
Akihiro Matsumoto ◽  
Weaam Agbariah ◽  
Stella Solveig Nolte ◽  
Rawan Andrawos ◽  
Hadara Levi ◽  
...  

2021 ◽  
Author(s):  
Hsin-Wei Lu ◽  
Philip H Smith ◽  
Philip Joris

Octopus cells are remarkable projection neurons of the mammalian cochlear nucleus, with extremely fast membranes and wide frequency tuning. They are considered prime examples of coincidence detectors but are poorly characterized in vivo. We discover that octopus cells are selective to frequency sweep direction, a feature that is absent in their auditory nerve inputs. In vivo intracellular recordings reveal that direction selectivity does not derive from cross-channel coincidence detection but hinges on the amplitudes and activation sequence of auditory nerve inputs tuned to clusters of hotspot frequencies. A simple biophysical model of octopus cells excited with real nerve spike trains recreates direction selectivity through interaction of intrinsic membrane conductances with activation sequence of clustered inputs. We conclude that octopus cells are sequence detectors, sensitive to temporal patterns across cochlear frequency channels. The detection of sequences rather than coincidences is a much simpler but powerful operation to extract temporal information.


2021 ◽  
Author(s):  
Carina B Maliakkal ◽  
Daniel Jacobsson ◽  
Marcus Ulf Tornberg ◽  
Kimberly Dick

Abstract We study using in situ transmission electron microscopy the birth of GaAs nanowires from liquid Au-Ga catalysts on amorphous substrates. Lattice-resolved observations of the starting stages of growth are reported here for the first time. It reveals how the initial nanostructure evolves into a nanowire growing in a zincblende <111> or the equivalent wurtzite <0001> direction. This growth direction(s) is what is typically observed in most III-V and II-VI nanowires. However, the reason for this preferential nanowire growth along this direction is still a dilemma. Based on the videos recorded shortly after the nucleation of nanowires, we argue that the lower catalyst droplet-nanowire interface energy of the {111} facet when zincblende (or the equivalent {0001} facet in wurtzite) is the reason for this direction selectivity in nanowires.


2021 ◽  
Author(s):  
Logan Chariker ◽  
Robert Shapley ◽  
Michael Hawken ◽  
Lai-Sang Young

This paper is about neural mechanisms of direction selectivity (DS) in Macaque primary visual cortex, V1. DS arises in V1 layer 4Ca, which receives afferent input from the Magnocellular division of the Lateral Geniculate Nucleus (LGN). LGN itself, however, is not direction-selective. To understand the mechanisms of DS, we built a new computational model (DSV1) of 4Ca. DSV1 is a realistic, large-scale mechanistic model that simulates many V1 properties: orientation selectivity, spatial and temporal tuning, contrast response, and DS. In the model, DS is initiated by the dynamic difference of OFF and ON Magnocellular cell activity that excites the model's layer 4Ca; the recurrent network has no intra-cortical direction-specific connections. In experiments, and in DSV1, most 4Ca Simple cells were highly direction-selective but few 4Ca Complex cells had high DS. Furthermore, the preferred directions of the model's direction- selective Simple cells were invariant with spatial and temporal frequency, in this way emulating the experimental data. The distribution of DS across the model's population of cells was very close to that found in experiments. Analyzing DSV1, we found that the dynamic interaction of feedforward and intra-cortical synaptic currents led to cortical enhancement of DS for a majority of cells. In view of the strong quantitative agreement between DS in data and in model simulations, the neural mechanisms of DS in DSV1 may be indicative of those in the real visual cortex.


2021 ◽  
Author(s):  
Simon Weiler ◽  
Drago Guggiana Nilo ◽  
Tobias Bonhoeffer ◽  
Mark H&uumlbener ◽  
Tobias Rose ◽  
...  

Pyramidal cells of neocortical layer 2/3 (L2/3 PyrCs) integrate signals from numerous brain areas and project throughout the neocortex. Within L2/3, PyrCs show functional and structural specializations depending on their pial depth, indicating participation in different functional microcircuits. However, it is unknown whether these depth-dependent differences result from separable L2/3 PyrC subtypes or whether functional and structural features represent a continuum while correlating with pial depth. Here, we assessed the stimulus selectivity, electrophysiological properties, dendritic morphology, and excitatory and inhibitory synaptic connectivity across the depth of L2/3 in the binocular visual cortex (bV1) of female mice. We find that the structure of the apical but not the basal dendritic tree varies with pial depth, which is accompanied by differences in passive but not active electrophysiological properties. PyrCs in lower L2/3 receive increased excitatory and inhibitory input from L4, while upper L2/3 PyrCs receive a larger proportion of intralaminar input. Complementary in vivo calcium imaging revealed a systematic change in visual responsiveness, with deeper L2/3 PyrCs showing more robust responses than superficial PyrCs. Furthermore, deeper L2/3 PyrCs are more strongly driven by contralateral than ipsilateral eye stimulation. In contrast, orientation- and direction-selectivity of L2/3 PyrCs are not dependent on pial depth. Importantly, the transitions of the various properties are gradual, and cluster analysis does not support the classification of L2/3 PyrCs into discrete subtypes. These results show that L2/3 PyrCs' multiple functional and structural properties systematically correlate with their depth within L2/3, forming a continuum rather than representing discrete subtypes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Giordano Ramos-Traslosheros ◽  
Marion Silies

AbstractIn Drosophila, direction-selective neurons implement a mechanism of motion computation similar to cortical neurons, using contrast-opponent receptive fields with ON and OFF subfields. It is not clear how the presynaptic circuitry of direction-selective neurons in the OFF pathway supports this computation if all major inputs are OFF-rectified neurons. Here, we reveal the biological substrate for motion computation in the OFF pathway. Three interneurons, Tm2, Tm9 and CT1, provide information about ON stimuli to the OFF direction-selective neuron T5 across its receptive field, supporting a contrast-opponent receptive field organization. Consistent with its prominent role in motion detection, variability in Tm9 receptive field properties transfers to T5, and calcium decrements in Tm9 in response to ON stimuli persist across behavioral states, while spatial tuning is sharpened by active behavior. Together, our work shows how a key neuronal computation is implemented by its constituent neuronal circuit elements to ensure direction selectivity.


2021 ◽  
Vol 118 (32) ◽  
pp. e2105062118
Author(s):  
Logan Chariker ◽  
Robert Shapley ◽  
Michael Hawken ◽  
Lai-Sang Young

This paper offers a theory for the origin of direction selectivity (DS) in the macaque primary visual cortex, V1. DS is essential for the perception of motion and control of pursuit eye movements. In the macaque visual pathway, neurons with DS first appear in V1, in the Simple cell population of the Magnocellular input layer 4Cα. The lateral geniculate nucleus (LGN) cells that project to these cortical neurons, however, are not direction selective. We hypothesize that DS is initiated in feed-forward LGN input, in the summed responses of LGN cells afferent to a cortical cell, and it is achieved through the interplay of 1) different visual response dynamics of ON and OFF LGN cells and 2) the wiring of ON and OFF LGN neurons to cortex. We identify specific temporal differences in the ON/OFF pathways that, together with item 2, produce distinct response time courses in separated subregions; analysis and simulations confirm the efficacy of the mechanisms proposed. To constrain the theory, we present data on Simple cells in layer 4Cα in response to drifting gratings. About half of the cells were found to have high DS, and the DS was broadband in spatial and temporal frequency (SF and TF). The proposed theory includes a complete analysis of how stimulus features such as SF and TF interact with ON/OFF dynamics and LGN-to-cortex wiring to determine the preferred direction and magnitude of DS.


Sign in / Sign up

Export Citation Format

Share Document