scholarly journals Cellulose elementary fibril orientation in the spruce S1-2 transition layer

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mehedi Reza ◽  
Carlo Bertinetto ◽  
Kavindra Kumar Kesari ◽  
Peter Engelhardt ◽  
Janne Ruokolainen ◽  
...  
2003 ◽  
Vol 780 ◽  
Author(s):  
P. Thomas ◽  
E. Nabighian ◽  
M.C. Bartelt ◽  
C.Y. Fong ◽  
X.D. Zhu

AbstractWe studied adsorption, growth and desorption of Xe on Nb(110) using an in-situ obliqueincidence reflectivity difference (OI-RD) technique and low energy electron diffraction (LEED) from 32 K to 100 K. The results show that Xe grows a (111)-oriented film after a transition layer is formed on Nb(110). The transition layer consists of three layers. The first two layers are disordered with Xe-Xe separation significantly larger than the bulk value. The third monolayer forms a close packed (111) structure on top of the tensile-strained double layer and serves as a template for subsequent homoepitaxy. The adsorption of the first and the second layers are zeroth order with sticking coefficient close to one. Growth of the Xe(111) film on the transition layer proceeds in a step flow mode from 54K to 40K. At 40K, an incomplete layer-by-layer growth is observed while below 35K the growth proceeds in a multilayer mode.


2019 ◽  
Vol 24 (94/4) ◽  
pp. 27-32
Author(s):  
T.S. Skoblo ◽  
I.N. Rybalko ◽  
A.V. Tihonov ◽  
T.V. Maltsev

The possibility of using a non-magnetic fraction of a detonation charge with a diamond fraction from the disposal of ammunition to modify the restoration coatings of a natural product – clay and secondary raw materials — was studied. Four different coating variants were investigated. For this, a T-620 electrode was used with its additional modification by coating with bentonite clay, as well as with a non-magnetic fraction of the detonation charge and applying it in the form of a slip coating on the cutting surface of the cultivator. It is shown that the use of such additives allows to increase the resistance of the working tool of agricultural machines, reduces its tendency to damage due to the minimum penetration of the thin-walled product of the hoe blade and a decrease in the cross section of the transition layer and the level of stress. Each modifier makes changes to increase the microhardness to varying degrees. An increase in microhardness is observed on the surface of the coating and its gradual decrease to the transition layer. The surface coating with the additional introduction of bentonite clay in a liquid bath has the highest microhardness. Its microhardness varies from HV-50-1009.7 to HV-50-615.2. Similarly, the effect of the modifying additive of the detonation charge, the microhardness varies from HV-50-969.6 to HV-50-633.26. When clay or a mixture is introduced into the restoration coating, the wear resistance increases by 1.3 - 2 times with respect to the deposited surfacing only by the electrode and by 2 - 3 times to the initial material of the cultivator. It was found that the lowest coefficient is characteristic for dry friction, as well as for hydroabrasive, for samples with additional modification with clay or a detonation charge


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 404
Author(s):  
Alexandru Amărioarei ◽  
Frankie Spencer ◽  
Gefry Barad ◽  
Ana-Maria Gheorghe ◽  
Corina Iţcuş ◽  
...  

Current advances in computational modelling and simulation have led to the inclusion of computer scientists as partners in the process of engineering of new nanomaterials and nanodevices. This trend is now, more than ever, visible in the field of deoxyribonucleic acid (DNA)-based nanotechnology, as DNA’s intrinsic principle of self-assembly has been proven to be highly algorithmic and programmable. As a raw material, DNA is a rather unremarkable fabric. However, as a way to achieve patterns, dynamic behavior, or nano-shape reconstruction, DNA has been proven to be one of the most functional nanomaterials. It would thus be of great potential to pair up DNA’s highly functional assembly characteristics with the mechanic properties of other well-known bio-nanomaterials, such as graphene, cellulos, or fibroin. In the current study, we perform projections regarding the structural properties of a fibril mesh (or filter) for which assembly would be guided by the controlled aggregation of DNA scaffold subunits. The formation of such a 2D fibril mesh structure is ensured by the mechanistic assembly properties borrowed from the DNA assembly apparatus. For generating inexpensive pre-experimental assessments regarding the efficiency of various assembly strategies, we introduced in this study a computational model for the simulation of fibril mesh assembly dynamical systems. Our approach was based on providing solutions towards two main circumstances. First, we created a functional computational model that is restrictive enough to be able to numerically simulate the controlled aggregation of up to 1000s of elementary fibril elements yet rich enough to provide actionable insides on the structural characteristics for the generated assembly. Second, we used the provided numerical model in order to generate projections regarding effective ways of manipulating one of the the key structural properties of such generated filters, namely the average size of the openings (gaps) within these meshes, also known as the filter’s aperture. This work is a continuation of Amarioarei et al., 2018, where a preliminary version of this research was discussed.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 584
Author(s):  
Rui Dang ◽  
Liqiu Ma ◽  
Shengguo Zhou ◽  
Deng Pan ◽  
Bin Xia

Ultra-high molecular weight polythene (UHMWPE), with outstanding characteristics, is widely applied in modern industry, while it is also severely limited by its inherent shortcomings, which include low hardness, poor wear resistance, and easy wear. Implementation of feasible protection on ultra-high molecular weight polythene to overcome its shortcomings would be of significance. In the present study, amorphous carbon (a-C) film was fabricated on ultra-high molecular weight polythene (UHMWPE) to provide good protection, and the relevant growth mechanism of a-C film was revealed by controlling carbon plasma currents. The results showed the in situ transition layer, in the form of chemical bonds, was formed between the UHMWPE substrate and the a-C film with the introduction of carbon plasma, which provided strong adhesion, and then the a-C film continued epitaxial growth on the in situ transition layer with the treatment of carbon plasma. This in situ growth of a-C film, including the in situ transition layer and the epitaxial growth layer, significantly improved the wetting properties, mechanical properties, and tribological properties of UHMWPE. In particular, good protection by in situ growth a-C film on UHMWPE was achieved during sliding wear.


2021 ◽  
Vol 862 ◽  
pp. 158319
Author(s):  
Xiaoqiang Li ◽  
Cunliang Pan ◽  
Daojian Fu ◽  
Min Wang ◽  
Zhen Zhang ◽  
...  

2020 ◽  
Vol 299 ◽  
pp. 37-42
Author(s):  
O.A. Fomina ◽  
Andrey Yu. Stolboushkin

A model of the transition layer between the shell and the core of a ceramic matrix composite from coal waste and clay has been developed. The chemical, granulometric and mineral compositions of the beneficiation of carbonaceous mudstones and clay were studied. The technological and ceramic properties of raw materials for the samples manufacturing were determined. The method of manufacturing multilayer ceramic samples from coal waste, clay and their mixture is given. The number of transition layers in the contact zone between the clay shell and the core from coal wastes is determined. The deformation and swelling phenomena of model samples from coal wastes, clay, and their mixtures were revealed at the firing temperature of more than 1000 °C. The formation of a reducing ambient in the center of the sample with insufficient air flow is shown. The influence of the carbonaceous particles amount and the ferrous form iron oxide in the coal wastes on the processes of expansion of multilayer samples during firing has been established.


Sign in / Sign up

Export Citation Format

Share Document