flow mode
Recently Published Documents


TOTAL DOCUMENTS

583
(FIVE YEARS 181)

H-INDEX

34
(FIVE YEARS 6)

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Leyla Gazigil ◽  
Eren Er ◽  
O. Erdem Kestioğlu ◽  
Taner Yonar

In this study, it is aimed to investigate the potential of electrodialysis bipolar membrane (EDBM) systems for the recovery of the concentrate originating from an organized industrial estate (OIE) wastewater treatment system with reverse osmosis (RO). Acids and bases were obtained from a pilot-scale treatment plant as a result of the research. Furthermore, the sustainability and affordability of acids and bases obtained by EDBM systems were investigated. Six cycles were carried out in continuous-flow mode with the EDBM system as batch cycles in the disposal of the concentrate and the production of acids and bases with the EDBM system. For each cycle, the EDBM system was operated for 66, 48, 66, and 80 min, respectively, and the last two cycles were operated for a total of 165 min (70 + 90) with 5 min of waiting. In the EDBM system, a working method was determined such that the cycle flow rate was 180 L/hour, energy to be given to the system was 25 V, and the working pressure was in the range of 0.8–2.5 bar. In the six cycles with the EDBM system, the concentrate, acid and base, conductivity, pH, and pressure increase values were investigated depending on time. Throughout all these studies, the cycles were continued over the products formed in the acid and base chamber. As a result of all the cycles, acid (HCl) production at a level of 1.44% and base (NaOH) production at a level of 2% were obtained.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 190
Author(s):  
Qian Wang ◽  
Xiaobin Tang ◽  
Heng Liang ◽  
Wenjun Cheng ◽  
Guibai Li ◽  
...  

Gravity-driven membrane (GDM) filtration technology has been extensively in the employed drinking water treatment, however, the effect filtration mode (i.e., dead-end mode vs. cross-flow mode) on its long-term performance has not been systematically investigated. In this study, pilot-scale GDM systems were operated using two submerged filtration mode (SGDM) and cross-flow mode (CGDM) at the gravity-driven pressures 120 mbar and 200 mbar, respectively. The results showed that flux stabilization was observed both in the SGDM and CGDM during long-term filtration, and importantly the stabilized flux level of CGDM was elevated by 3.5–67.5%, which indicated that the filtration mode would not influence the occurrence of flux stability, but significantly improve the stable flux level. Interestingly, the stable flux level was not significantly improved with the increase of driven pressure, and the optimized driven pressure was 120 mbar. In addition, the GDM process conferred effective removals of turbidity, UV254, CODMn, and DOC, with average removals of 99%, 43%, 41%, and 20%, respectively. With the assistance of cross flow to avert the overaccumulation of contaminants on the membrane surface, CGDM process exhibited even higher removal efficiency than SGDM process. Furthermore, it can be found that the CGDM system can effectively remove the fluorescent protein-like substances, and the intensities of tryptophans substance and soluble microbial products were reduced by 64.61% and 55.08%, respectively, higher than that of the SGDM. Therefore, it can be determined that the filtration mode played an important role in the flux stabilization of GDM system during long-term filtration, and the cross-flow filtration mode can simultaneously improve the stabilized flux level and removal performance.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 449
Author(s):  
Emanuela Calcio Gaudino ◽  
Giorgio Grillo ◽  
Maela Manzoli ◽  
Silvia Tabasso ◽  
Simone Maccagnan ◽  
...  

In the past, the use of mechanochemical methods in organic synthesis was reported as somewhat of a curiosity. However, perceptions have changed over the last two decades, and this technology is now being appreciated as a greener and more efficient synthetic method. The qualified “offer” of ball mills that make use of different set-ups, materials, and dimensions has allowed this technology to mature. Nevertheless, the intrinsic batch nature of mechanochemical methods hinders industrial scale-ups. New studies have found, in reactive extrusion, a powerful technique with which to activate chemical reactions with mechanical forces in a continuous flow. This new environmentally friendly mechanochemical synthetic method may be able to miniaturize production plants with outstanding process intensifications by removing organic solvents and working in a flow mode. Compared to conventional processes, reactive extrusions display high simplicity, safety, and cleanliness, which can be exploited in a variety of applications. This paper presents perspective examples in the better-known areas of reactive extrusions, including oxidation reactions, polymer processing, and biomass conversion. This work should stimulate further developments, as it highlights the versatility of reactive extrusion and the huge potential of solid-phase flow chemistry.


Author(s):  
BAKHRUSHINA ELENA O. ◽  
ANUROVA MARIA N. ◽  
ZAVALNIY MICHAEL S. ◽  
DEMINA NATALIA B. ◽  
BARDAKOV ALEXANDER I. ◽  
...  

Objective: The main objective of our study is the comprehensive analysis and characterization of the existing spreadability evaluation strategies, the comparison of the obtained results reproducibility and convergence through the example of the 9 most widely used dermatological gels. Methods: Dolobene®, Flucinar®, Ketorol®, Contractubex®, Dr. Theiss Venen gel®, Solcoseryl®, Deep Relief®, Hepatrombin® pharmacopoeia gel samples were analyzed using parallel-plate, “slip and drag”, and viscometry methods. Analysis was performed in flow mode at 32±0.2 °C, over shear rates ranging from 0 to 350 s−1, increasing over a period of 120 s, and was maintained at the superior limit for 10 s and then decreased during the same period. At least 5 replicates of each sample were evaluated, and the upward flow curves were fitted using the Casson mathematical model. Results: Solcoseryl® and Dolobene® showed the best spreadability in the parallel-plate method (3115.66±50.00 and 3316.63±50.00, respectively); Contractubex® and Dolobene showed the best spreadability in the “slip and drag” test (73.46±0.5 and 18.32±0.5, respectively); Solcoseryl® and Contractubex® showed the best spreadability in the viscometry test (43.86±0.5 and 76.92±0.5, respectively). Conclusion: This study analyzed the existing methods for determining the spreadability using commercially available samples of the dermatological gels as examples. The viscometric and the "Slip and drag" methods use different characteristics of spreadability, giving a complex evaluation of the measured parameter in vitro. Therefore, the combination of these two methods has the greatest prospects for reliable determination of this indicator.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 343
Author(s):  
Jianmin Zheng ◽  
Liusheng Xiao ◽  
Mingtao Wu ◽  
Shaocheng Lang ◽  
Zhonggang Zhang ◽  
...  

In this work, a 3D multi-physics coupled model was developed to analyze the temperature and thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack, and then the effects of different flow channels (co-flow, counter-flow and cross-flow) and electrolyte thickness were investigated. The simulation results indicate that the generated power is higher while the thermal stress is lower in the co-flow mode than those in the cross-flow mode. In the cross-flow mode, a gas inlet and outlet arrangement is proposed to increase current density by about 10%. The generated power of the stack increases with a thin electrolyte layer, but the temperature and its gradient of the stack also increase with increase of heat generation. The thermal stress for two typical sealing materials is also studied. The predicted results can be used for design and optimization of the stack structure to achieve lower stress and longer life.


Author(s):  
Valerii Tuz ◽  
Nataliy Lebed ◽  
Maksym Lytvynenko

Perfecting the existing technologies and developing new ones require to rethink the processes in order to obtain qualitatively new results. Widespread use of cryogenic engineering in the chemical industry and medicine calls for a thorough analysis of both the efficiency of thermodynamic cycles and the hardware design of appropriate equipment. The power necessary to obtain low working medium temperatures is distributed between the cooling of the object and the losses in the various elements of the cryogenic setup. One of the best ways to increase the efficiency of the setup is to use the cold energy recovery. This is done by using various designs of recuperative heat exchangers, such as twisted heat exchangers. Existing methods of calculating the parameters of power equipment are based on empirical dependencies, which require some justification and clarification in order to be used for calculating cryogenic equipment parameters. The article describes the experimental setup, presents the research methods applied and analyses the results of the study on convective heat transfer in external flow past the tubular surface of the twisted heat exchanger. The obtained results for the laminar gas flow mode at Re < 2300 allowed determining the length of the initial heat section depending on the regime parameters of the contact phases and the geometric specifications of the twisted heat exchanger. The obtained dependence will make it possible to refine the method of calculating the parameters of the twisted heat exchanger in the annular channel.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 54
Author(s):  
Vairavel Parimelazhagan ◽  
Gautham Jeppu ◽  
Nakul Rampal

The adsorption of Congo red (CR), an azo dye, from aqueous solution using free and immobilized agricultural waste biomass of Nelumbo nucifera (lotus) has been studied separately in a continuous fixed-bed column operation. The N. nucifera leaf powder adsorbent was immobilized in various polymeric matrices and the maximum decolorization efficiency (83.64%) of CR occurred using the polymeric matrix sodium silicate. The maximum efficacy (72.87%) of CR dye desorption was obtained using the solvent methanol. Reusability studies of free and immobilized adsorbents for the decolorization of CR dye were carried out separately in three runs in continuous mode. The % color removal and equilibrium dye uptake of the regenerated free and immobilized adsorbents decreased significantly after the first cycle. The decolorization efficiencies of CR dye adsorption were 53.66% and 43.33%; equilibrium dye uptakes were 1.179 mg g–1 and 0.783 mg g–1 in the third run of operation with free and immobilized adsorbent, respectively. The column experimental data fit very well to the Thomas and Yoon–Nelson models for the free and immobilized adsorbent with coefficients of correlation R2 ≥ 0.976 in various runs. The study concludes that free and immobilized N. nucifera can be efficiently used for the removal of CR from synthetic and industrial wastewater in a continuous flow mode. It makes a substantial contribution to the development of new biomass materials for monitoring and remediation of toxic dye-contaminated water resources.


Author(s):  
Thin Quynh Nguyen ◽  
Andrey Y. Dunin ◽  
Mikhail G. Shatrov

This paper presents a method and results, which studies influences of the fuel flow mode on the pressure oscillation in the volumes of the accumulator fuel system. The fuel is supplied through nozzle holes into a constant volume chamber, which is installed a jet for fuel discharge into the low-pressure line. Results show that the increase in the base pressure value of the fuel accumulator leads to the rise in the slope of the leading edge of the differential characteristics and the maximum dQ/dt value changes closer to the beginning moment of the fuel injection process. At the same time, the control pressure value is a significant parameter that greatly influences the shape of the injection characteristic. In addition, when using the drain orifices with different diameters, received values and differential characteristics vary during the fuel supply process. The differential characteristics of the study are the basis for implementing fuel injection control solutions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3274
Author(s):  
Evgeny M. Strizhenov ◽  
Sergey S. Chugaev ◽  
Ilya E. Men’shchikov ◽  
Andrey V. Shkolin ◽  
Anatoly A. Zherdev

Adsorbed natural gas (ANG) technology is a promising alternative to traditional compressed (CNG) and liquefied (LNG) natural gas systems. Nevertheless, the energy efficiency and storage capacity of an ANG system strongly depends on the thermal management of its inner volume because of significant heat effects occurring during adsorption/desorption processes. In the present work, a prototype of a circulating charging system for an ANG storage tank filled with a monolithic nanoporous carbon adsorbent was studied experimentally under isobaric conditions (0.5–3.5 MPa) at a constant volumetric flow rate (8–18 m3/h) or flow mode (Reynolds number at the adsorber inlet from 100,000 to 220,000). The study of the thermal state of the monolithic adsorbent layer and internal heat exchange processes during the circulating charging of an adsorbed natural gas storage system was carried out. The correlation between the gas flow mode, the dynamic gas flow temperature, and the heat transfer coefficient between the gas and adsorbent was determined. A one-dimensional mathematical model of the circulating low-temperature charging process was developed, the results of which correspond to the experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document