scholarly journals Thermal properties of thin films made from MoS2 nanoflakes and probed via statistical optothermal Raman method

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Arkadiusz P. Gertych ◽  
Anna Łapińska ◽  
Karolina Czerniak-Łosiewicz ◽  
Anna Dużyńska ◽  
Mariusz Zdrojek ◽  
...  

Abstract A deep understanding of the thermal properties of 2D materials is crucial to their implementation in electronic and optoelectronic devices. In this study, we investigated the macroscopic in-plane thermal conductivity (κ) and thermal interface conductance (g) of large-area (mm2) thin film made from MoS2 nanoflakes via liquid exfoliation and deposited on Si/SiO2 substrate. We found κ and g to be 1.5 W/mK and 0.23 MW/m2K, respectively. These values are much lower than those of single flakes. This difference shows the effects of interconnections between individual flakes on macroscopic thin film parameters. The properties of a Gaussian laser beam and statistical optothermal Raman mapping were used to obtain sample parameters and significantly improve measurement accuracy. This work demonstrates how to address crucial stability issues in light-sensitive materials and can be used to understand heat management in MoS2 and other 2D flake-based thin films.

2001 ◽  
Vol 15 (17n19) ◽  
pp. 667-670 ◽  
Author(s):  
Y. RODRÍGUEZ-LAZCANO ◽  
M. T. S. NAIR ◽  
P. K. NAIR

The possibility of generating ternary compounds through annealing thin film stacks of binary composition has been demonstrated before. In this work we report a method to produce large area coating of ternary compounds through a reaction in solid state between thin films of Sb2S3 and CuS. Thin films of Sb2S3 -CuS were deposited on glass substrates in the sequence of Sb2S3 followed by CuS (on Sb2S3 ) using chemical bath deposition method. The multilayer stack, thus produced, of approximately 0.5 μm in thickness, where annealed under nitrogen and argon atmospheres at different temperatures to produce films of ternary composition, CuxSbySz . An optical band gap of ~1.5 eV was observed in these films, suggesting that the thin films of ternary composition formed in this way are suitable for use as absorber materials in photovoltaic devices. The results on the analyses of structural, electrical and optical properties of films formed with different combinations of thickness in the multilayers will be discussed in the paper.


2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Suzan Biran Ay ◽  
Nihan Kosku Perkgoz

Large-area catalytic thin films offer great potential for green technology applications in order to save energy, combat pollution, and reduce global warming. These films, either embedded with nanoparticles, shaped with nanostructuring techniques, hybridized with other systems, or functionalized with bionanotechnological methods, can include many different surface properties including photocatalytic, antifouling, abrasion resistant and mechanically resistive, self-cleaning, antibacterial, hydrophobic, and oleophobic features. Thus, surface functionalization with such advanced structuring methods is of significance to increase the performance and wide usage of large-area thin film coatings specifically for environmental remediation. In this review, we focus on methods to increase the efficiency of catalytic reactions in thin film and hence improve the performance in relevant applications while eliminating high cost with the purpose of widespread usage. However, we also include the most recent hybrid architectures, which have potential to make a transformational change in surface applications as soon as high quality and large area production techniques are available. Hence, we present and discuss research studies regarding both organic and inorganic methods that are used to structure thin films that have potential for large-area and eco-friendly coatings.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1683 ◽  
Author(s):  
P. Divya ◽  
S. Arulkumar ◽  
S. Parthiban ◽  
Anandarup Goswami ◽  
Tansir Ahamad ◽  
...  

Titanium dioxide (TiO2) thin films were rapidly coated on Corning glass substrates from the precursor solution using the wire-bar technique at the room temperature and then post-annealed at 400, 500 and 600 °C for 1 h under atmospheric conditions. The structural, morphological, optical, wettability and photocatalytic properties of the films were studied. X-ray diffraction analysis confirmed the formation of an anatase TiO2 structure irrespective of the post-annealing temperatures. The optical transparency of the films in the visible range was measured to be > 70%. A water contact angle (WCA) of ~0° was observed for TiO2 thin-film, post-annealed at 400 °C and 500 °C. However, WCA of 40.3° was observed for post-annealed at 600 °C. The photocatalytic dye-degradation using post-annealed thin-film was investigated indicating a steady improvement in the dye-degradation percentage (from 24.3 to 29.4%) with the increase of post-annealing temperature. The demonstrated TiO2 thin-films deposited by wire-bar coating technique showed promises for the manufacturing of large-area cost-effective self-cleaning window glass.


2017 ◽  
Vol 5 (2) ◽  
pp. 339-349 ◽  
Author(s):  
Sung Woon Cho ◽  
Da Eun Kim ◽  
Won Jun Kang ◽  
Bora Kim ◽  
Dea Ho Yoon ◽  
...  

The chemical durability of solution-processed oxide films was engineered via Sn-incorporation and thermal-treatment, which was applied for large-area TFT circuit integration.


2009 ◽  
Vol 1153 ◽  
Author(s):  
Ruud E.I. Schropp ◽  
Zomer Silvester Houweling ◽  
Vasco Verlaan

AbstractHot Wire Chemical Vapor Deposition (HWCVD) is a fast deposition technique with high potential for homogeneous deposition of thin films on large area panels or on continuously moving substrates in an in-line manufacturing system. As there are no high-frequency electromagnetic fields, scaling up is not hampered by finite wavelength effects or the requirement to avoid inhomogeneous electrical fields. Since 1996 we have been investigating the application of the HWCVD process for thin film transistor manufacturing. It already appeared then that these Thin Film Transistors (TFTs) were electronically far more stable than those with Plasma Enhanced (PE) CVD amorphous silicon. Recently, we demonstrated that very compact SiNx layers can be deposited at high deposition rates, up to 7 nm/s. The utilization of source gases in HWCVD of a-Si3N4 films deposited at 3 nm/s is 75 % and 7 % for SiH4 and NH3, respectively. Thin films of stoichiometric a-Si3N4 deposited at this rate have a high mass-density of 3.0 g/cm3. The dielectric properties have been evaluated further in order to establish their suitability for incorporation in TFTs. Now that all TFT layers, namely, the SiNx insulator, the a-Si:H or μc Si:H layers, and the n-type doped thin film silicon can easily be manufactured by HWCVD, the prospect of “all HWCVD” TFTs for active matrix production is within reach. We tested the 3 nm/s SiNx material combined with our protocrystalline Si:H layers deposited at 1 nm/s in ‘all HW’ TFTs. Results show that the TFTs are state of the art with a field-effect mobility of 0.4 cm2/Vs. In order to assess the feasibility of large area deposition we are investigating in-line HWCVD for displays and solar cells.


2007 ◽  
Vol 561-565 ◽  
pp. 1165-1168 ◽  
Author(s):  
Chien Yie Tsay ◽  
Chung Kwei Lin ◽  
Hong Ming Lin ◽  
Shih Chieh Chang ◽  
Bor Chuan Chung

The TFTs array fabrication process for large-area TFT-LCD has been continuously developed for simplifying processing steps, improving performance and reducing cost in the process of mass production. In this study, the hydrogenated amorphous silicon (a-Si:H) TFTs with low resistivity electrodes , silver thin films, were prepared by using the selective deposition method that combined lift-off and electroless plated processes. This developed process can direct pattern the electrode of transistor devices without the etching process and provide ease processing steps. The as-deposited Ag films were annealed at 200 oC for 10 minutes under N2 atmosphere. The results shows that the adhesion properties can be enhanced and the resistivity has been improved from 6.0 μ,-cm, significantly decrease by 35%, of as-deposited Ag films by annealed. The thickness of Ag thin film is about 100 nm and the r. m. s roughness value is 1.54 nm. The a-Si:H TFT with Ag thin films as source and drain electrodes had a field effect mobility of 0.18 cm2/Vs, a threshold voltage of 2.65 V, and an on/off ratio of 3×104.


RSC Advances ◽  
2020 ◽  
Vol 10 (24) ◽  
pp. 14147-14153 ◽  
Author(s):  
Youngho Kim ◽  
Sang Hoon Lee ◽  
Seyoung Jeong ◽  
Bum Jun Kim ◽  
Jae-Young Choi ◽  
...  

We heat-treated an amorphous large-area WO3 thin film to synthesize high-density, high-quality WO3 nanorods.


2016 ◽  
Vol 78 (5-10) ◽  
Author(s):  
S. Malik ◽  
Fatin Hana Naning ◽  
Azyuni Aziz

Various techniques have been used to prepare polymer nanocomposite thin films that involve tedious work and consume considerable amount of materials and time. In this study, nanocomposite thin films of poly (3-hexylthiophene -2, 5-diyl) (P3HT), stearic acid and CdSe nanoparticles were fabricated by a stamping method which is a modification of Langmuir Schaefer technique. The CdSe nanoparticles were then grown in-situ between subsequent layers of thin film by gas exposure technique. Their surface-pressure (-A) isotherms and morphology were investigated. The surface-pressure isotherms revealed that, impurities in water subphase affect the profile of Langmuir monolayer. Stearic acid was found to be more dominant as compared to P3HT. The modified Langmuir Schaefer technique produced fairly smooth, large area nanocomposite thin films as shown by the AFM images. A prominent advantage of this procedure is that it requires only small amount of materials.


Solar Energy ◽  
2016 ◽  
Vol 132 ◽  
pp. 547-557 ◽  
Author(s):  
Ming-Hua Yeh ◽  
Shih-Jung Ho ◽  
Guang-Hong Chen ◽  
Chang-Wei Yeh ◽  
Pin-Ru Chen ◽  
...  

Solar Energy ◽  
2016 ◽  
Vol 125 ◽  
pp. 415-425 ◽  
Author(s):  
Ming-Hua Yeh ◽  
Hong-Ru Hsu ◽  
Kai-Cheng Wang ◽  
Shih-Jung Ho ◽  
Guang-Hong Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document