scholarly journals Evaluations of Acute and Sub-Acute Biological Effects of Narrowband and Moderate-Band High Power Electromagnetic Waves on Cellular Spheroids

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Laure Gibot ◽  
Jelena Kolosnjaj-Tabi ◽  
Elisabeth Bellard ◽  
Thomas Chretiennot ◽  
Quentin Saurin ◽  
...  

Abstract High power electromagnetic signals can disrupt the functioning of electronic devices. As electromagnetism plays a role in cells homeostasis, such electromagnetic signals could potentially also alter some physiological processes. Herein we report on distinct biological parameters assessment after cellular spheroids exposure to high power electromagnetic signals, such as the ones used for defense applications. Signals effects were assessed in tumor cells spheroids and in normal human dermal fibroblasts spheroids, where macroscopic aspect, growth, plasma membrane integrity, induction of apoptosis, ATP content, and mitochondrial potential were investigated after spheroids exposure to high power electromagnetic signals. No significant effects were observed, indicating that 1.5 GHz narrowband electromagnetic fields with incident amplitude level of 40 kV/m, and 150 MHz moderate-band electric fields with an amplitude of 72.5 to approximately 200 kV/m, do not cause any significant alterations of assessed parameters.

2021 ◽  
Vol 22 (16) ◽  
pp. 8516
Author(s):  
Jelena Kolosnjaj-Tabi ◽  
Muriel Golzio ◽  
Elisabeth Bellard ◽  
Alexandre Catrain ◽  
Thomas Chretiennot ◽  
...  

High power radiofrequencies may transiently or permanently disrupt the functioning of electronic devices, but their effect on living systems remains unknown. With the aim to evaluate the safety and biological effects of narrow-band and wide-band high-power electromagnetic (HPEM) waves, we studied their effects upon exposure of healthy and tumor-bearing mice. In field experiments, the exposure to 1.5 GHz narrow-band electromagnetic fields with the incident amplitude peak value level in the range of 40 kV/m and 150 MHz wide-band electric fields with the amplitude peak value in the range of 200 kV/m, did not alter healthy and tumor-bearing animals’ growth, nor it had any impact on cutaneous murine tumors’ growth. While we did not observe any noticeable behavioral changes in mice during the exposure to narrow-band signals when wide-band HPEM signals were applied, mice could behave in a similar way as they respond to loud noise signals: namely, if a mouse was exploring the cage prior to signal application, it returned to companion mates when wide-band HPEM signals were applied. Moreover, the effect of wide-band signals was assessed on normal blood vessels permeability in real-time in dorsal-chamber-bearing mice exposed in a pilot study using wide-band signal applicators. Our pilot study conducted within the applicator and performed at the laboratory scale suggests that the exposure to wide-band signals with the amplitude of 47.5 kV/m does not result in increased vessel permeability.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2282
Author(s):  
Valentina Masola ◽  
Mario Bonomini ◽  
Maurizio Onisto ◽  
Pietro Manuel Ferraro ◽  
Arduino Arduini ◽  
...  

Glucose-based solutions remain the most used osmotic agents in peritoneal dialysis (PD), but unavoidably they contribute to the loss of peritoneal filtration capacity. Here, we evaluated at a molecular level the effects of XyloCore, a new PD solution with a low glucose content, in mesothelial and endothelial cells. Cell viability, integrity of mesothelial and endothelial cell membrane, activation of mesothelial and endothelial to mesenchymal transition programs, inflammation, and angiogenesis were evaluated by several techniques. Results showed that XyloCore preserves mesothelial and endothelial cell viability and membrane integrity. Moreover XyloCore, unlike glucose-based solutions, does not exert pro-fibrotic, -inflammatory, and -angiogenic effects. Overall, the in vitro evidence suggests that XyloCore could represent a potential biocompatible solution promising better outcomes in clinical practice.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Marie C. Lefevre ◽  
Gerwin Dijk ◽  
Attila Kaszas ◽  
Martin Baca ◽  
David Moreau ◽  
...  

AbstractGlioblastoma is a highly aggressive brain tumor, very invasive and thus difficult to eradicate with standard oncology therapies. Bioelectric treatments based on pulsed electric fields have proven to be a successful method to treat cancerous tissues. However, they rely on stiff electrodes, which cause acute and chronic injuries, especially in soft tissues like the brain. Here we demonstrate the feasibility of delivering pulsed electric fields with flexible electronics using an in ovo vascularized tumor model. We show with fluorescence widefield and multiphoton microscopy that pulsed electric fields induce vasoconstriction of blood vessels and evoke calcium signals in vascularized glioblastoma spheroids stably expressing a genetically encoded fluorescence reporter. Simulations of the electric field delivery are compared with the measured influence of electric field effects on cell membrane integrity in exposed tumor cells. Our results confirm the feasibility of flexible electronics as a means of delivering intense pulsed electric fields to tumors in an intravital 3D vascularized model of human glioblastoma.


1963 ◽  
Vol 41 (10) ◽  
pp. 1702-1711 ◽  
Author(s):  
Mahendra Singh Sodha ◽  
Carl J. Palumbo

In this communication the authors have obtained an expression for current density in a slightly ionized uniform plasma in the presence of a number of electric fields of different frequencies by solving the appropriate Boltzmann's equation. This expression along with the wave equation has been used to investigate the nonlinear mutual interaction of a number of electromagnetic waves, propagating in a plasma. Limitations of the present analysis have also been indicated and the physical significance of the results has been discussed. The technique has also been applied to investigate the mutual interaction of amplitude-modulated waves, and the results express a generalization of Luxembourg effect to a number of strong modulated waves.


2003 ◽  
Vol 1 (1) ◽  
pp. 25-32 ◽  
Author(s):  
G. Spoto ◽  
A. Contento ◽  
M. Di Nicola ◽  
G. Bianchi ◽  
C. Di Giulio ◽  
...  

Phosphodiesterase activity was tested on homogenized eyes of young and old rats kept in hypoxic and hyperoxic conditions, with the aim of correlating any difference in PDE activity with aging and variations in atmospheric oxygen contents. The activities of the two enzymes, cAMP phosphodiesterase (cAMP-PDE) and cGMP phosphodiesterase (cGMP-PDE), were tested. Phosphodiesterases seem to be particularly susceptible to variations in oxygen tension, suggesting an important role of cyclic nucleotides in cellular adaptive processes. Particularly, cAMP-PDE activity increases lightly both in hypoxic and hyperoxic conditions in young and old rats. For cGMP-PDE activity of young rats, a similar behaviour to cAMP-PDE activity is observed with a similar increase in hypoxic and hyperoxic conditions respect to the control rats. Instead old rats seem to be quite insensible to hypoxia, while they show a fair increase in cGMP-PDE activity in the case of hyperoxia. The second messengers cAMP and cGMP play important roles in mediating the biological effects of a wide variety of first messengers. The intracellular levels of cyclic nucleotides depend upon rates of synthesis and degradation, actuated, respectively, by cyclases and phosphodiesterases (PDEs). Therefore, PDEs seem to play an important role in a wide variety of physiological processes.


2021 ◽  
pp. 42-53
Author(s):  
Y. Stein ◽  
◽  

Man-made electromagnetic waves are the most widely and rapidly expanding exposure in today's world, including exposure in several frequency groups: extremely low frequencies (ELF) from electricity lines, hybrid car batteries and high power lines (>3 Hz–3 kHz), radiofrequency (RF) and microwave frequencies including millimeter waves (3 kHz–300 GHz) from mobile phones, towers, base stations and wireless devices, and intermediate frequencies "Dirty Electricity" emitted from power lines. While such organizations as ICNIRP (the International Commission on Non-Ionizing Radiation Protection) still continue to claim that electromagnetic radiation can cause "only thermal effects", clinging to theory that does not match facts and upholding obsolete thermal safety standards, extensive scientific evidence has clearly demonstrated that non-thermal health effects produced by electromagnetic radiation do exist, are important to health, and should be taken into consideration when safety standards are set. This review aims to highlight some evidence of biologic effects in various body systems, and to suggest preventive measures to reduce such effects on health. Exposure to electromagnetic radiation at intensities lower than thermal safety standards has been associated with non-thermal biological effects including damage and changes to cells and DNA. This review presents evidence of such effects demonstrated in: the hematologic system, the nervous system, the immune system, the reproductive system, the skin and muscles, the cardiovascular system, glucose metabolism, and Electrohypersensitivity ("Microwave sickness"). Protective measures are then suggested to reduce these effects.


Author(s):  
V.V. Komarov ◽  
S.K. Bushanskiy ◽  
A.O. Churkin

Waveguide and cavity microwave filters continue to be the most important components of high-power radio electronic systems. Cavity microwave filters are of great interest as a separate group of devices of this type. The fields of application of such filters are constantly expanding, and the variety of their design is quite large. In addition, the requirements for their electromagnetic characteristics and reliability are currently increasing. In this regard, it becomes necessary to analyze the already created designs of these devices and study the main trends of their improvement. The objective of the present study is to review the known technical solutions of bandpass filters, made on cavity resonators of the microwave range. An overview of the designs of devices for filtering electromagnetic waves on cavity resonators with coaxial and waveguide coupling elements of various frequency ranges is carried out. It is proposed to use the configuration of basic resonators as the main criterion for the classification of these devices. In accordance with this criterion, five groups of filters are considered: on rectangular, cylindrical, spherical, coaxial resonators, as well as on resonators of complex shape. The review makes it possible to analyze the features of the implementation of different technical solutions for bandpass microwave filters of medium and high power levels and to identify the main trends in the development of this area of research.


Sign in / Sign up

Export Citation Format

Share Document